相关试卷
当前位置:首页 > 高中数学试卷 > 试卷信息
2005年北京市高考数学试卷(文科)(解析版)
一、选择题
详细信息
1. 难度:中等
设全集U=R,集合M={x|x>l},P={x|x2>l},则下列关系中正确的是( )
A.M=P
B.P⊂M
C.M⊂P
D.CUM∩P=∅
详细信息
2. 难度:中等
为了得到函数y=2x-3-1的图象,只需把函数y=2x上所有点( )
A.向右平移3个单位长度,再向下平移1个单位长度
B.向左平移3个单位长度,再向下平移1个单位长度
C.向右平移3个单位长度,再向上平移1个单位长度
D.向左平移3个单位长度,再向上平移1个单位长度
详细信息
3. 难度:中等
“m=manfen5.com 满分网”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的( )
A.充分必要条件
B.充分而不必要条件
C.必要而不充分条件
D.既不充分也不必要条件
详细信息
4. 难度:中等
manfen5.com 满分网,且manfen5.com 满分网,则向量manfen5.com 满分网manfen5.com 满分网的夹角为( )
A.30°
B.60°
C.120°
D.150°
详细信息
5. 难度:中等
从原点向圆x2+y2-12y+27=0作两条切线,则该圆夹在两条切线问的劣弧长为( )
A.π
B.2π
C.4π
D.6π
详细信息
6. 难度:中等
对任意的锐角α,β,下列不等关系中正确的是( )
A.sin(α+β)>sinα+sinβ
B.sin(α+β)>cosα+cosβ
C.cos(α+β)<sinα+sinβ
D.cos(α+β)<cosα+cosβ
详细信息
7. 难度:中等
在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中不成立的是( )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDF⊥平面ABC
D.平面PAE⊥平面ABC
详细信息
8. 难度:中等
五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( )
A.C41C44
B.C41A44
C.C44
D.A44
二、解答题
详细信息
9. 难度:中等
抛物线y2=4x的准线方程是    ,焦点坐标是   
详细信息
10. 难度:中等
manfen5.com 满分网的展开式的常数项是    (用数字作答)
详细信息
11. 难度:中等
函数f(x)=manfen5.com 满分网+manfen5.com 满分网的定义域为   
详细信息
12. 难度:中等
在△ABC中,AC=manfen5.com 满分网,∠A=45°,∠C=75°,则BC的长度是   
详细信息
13. 难度:中等
设函数f(x)=2x,对于任意的x1,x2(x1≠x2),有下列命题
①f(x1+x2)=f(x1)•f(x2);②f=f(x1)+f(x2);③manfen5.com 满分网;④manfen5.com 满分网.其中正确的命题序号是    
详细信息
14. 难度:中等
已知n次多项式Pn(x)=axn+a1xn-1+…+an-1x+an
如果在一种算法中,计算xk(k=2,3,4,…,n)的值需要k-1次乘法,计算P3(x)的值共需要9次运算(6次乘法,3次加法),那么计算Pn(x)的值共需要    次运算.
下面给出一种减少运算次数的算法:P(x)=a.Pn+1(x)=xPn(x)+ak+1(k=0,l,2,…,n-1).利用该算法,计算P3(x)的值共需要6次运算,计算Pn(x)的值共需要    次运算.
详细信息
15. 难度:中等
已知tanmanfen5.com 满分网=2,求
(1)tan(α+manfen5.com 满分网)的值
(2)manfen5.com 满分网的值.
详细信息
16. 难度:中等
manfen5.com 满分网如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D为AB的中点.
(Ⅰ)求证AC⊥BC1
(Ⅱ)求证AC1∥平面CDB1
(Ⅲ)求异面直线AC1与B1C所成角的余弦值.
详细信息
17. 难度:中等
数列{an}的前n项和为Sn,且a1=1,manfen5.com 满分网,n=1,2,3,…,求
( I)a2,a3,a4的值及数列{an}的通项公式;
(II)a2+a4+a6+…+a2n的值.
详细信息
18. 难度:中等
甲、乙俩人各进行3次射击,甲每次击中目标的概率为manfen5.com 满分网,乙每次击中目标的概率为manfen5.com 满分网
(Ⅰ)记甲恰好击中目标2次的概率;
(Ⅱ)求乙至少击中目标2次的概率;
(Ⅲ)求乙恰好比甲多击中目标2次的概率;
详细信息
19. 难度:中等
已知函数f(x)=-x3+3x2+9x+a.
(I)求f(x)的单调递减区间;
(Ⅱ)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
详细信息
20. 难度:中等
如图,直线l1:y=kx(k>0)与直线l2:y=-kx之间的阴影区域(不含边界)记为W,其左半部分记为W1,右半部分记为W2
(Ⅰ)分别用不等式组表示W1和W2
(Ⅱ)若区域W中的动点P(x,y)到l1,l2的距离之积等于d2,求点P的轨迹C的方程;
(Ⅲ)设不过原点O的直线l与(Ⅱ)中的曲线C相交于M1,M2两点,且与l1,l2分别交于M3,M4两点.求证△OM1M2的重心与△OM3M4的重心重合.

manfen5.com 满分网
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.