1. 难度:中等 | |
(北京卷理1)集合P={x∈Z|0≤x<3},M={x∈Z|x2<9},则P∩M=( ) A.{1,2} B.{0,1,2} C.{x|0≤x<3} D.{x|0≤x≤3} |
2. 难度:中等 | |
在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是( ) A.4+8i B.8+2i C.2+4i D.4+i |
3. 难度:中等 | |
从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是( ) A. B. C. D. |
4. 难度:中等 | |
若,是非零向量,且⊥,||≠||,则函数f(x)=(x+)(x-)是( ) A.一次函数且是奇函数 B.一次函数但不是奇函数 C.二次函数且是偶函数 D.二次函数但不是偶函数 |
5. 难度:中等 | |
一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为( ) A. B. C. D. |
6. 难度:中等 | |
给定函数①,②,③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是( ) A.①② B.②③ C.③④ D.①④ |
7. 难度:中等 | |
某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为a的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( ) A.2sinα-2cosα+2 B.sinα-cosα+3 C.3sinα-cosα+1 D.2sinα-cosα+1 |
8. 难度:中等 | |
如图,正方体ABCD-A1B1C1D1的棱长为2,动点E、F在棱A1B1上.点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,A1E=y(x,y大于零),则三棱锥P-EFQ的体积( ) A.与x,y都有关 B.与x,y都无关 C.与x有关,与y无关 D.与y有关,与x无关 |
9. 难度:中等 | |
已知函数y=,如图表示的是给定x的值,求其对应的函数值y的程序框图, ①处应填写 ; ②处应填写 . |
10. 难度:中等 | |
在△ABC中,若b=1,c=,∠C=,则a= . |
11. 难度:中等 | |
若点p(m,3)到直线4x-3y+1=0的距离为4,且点p在不等式2x+y<3表示的平面区域内,则m= . |
12. 难度:中等 | |
从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a= .若要从身高在[120,130﹚,[130,140﹚,[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为 . |
13. 难度:中等 | |
已知双曲线的离心率为2,焦点与椭圆的焦点相同,那么双曲线的焦点坐标为 ;渐近线方程为 . |
14. 难度:中等 | |
(北京卷理14)如图放置的边长为1的正方形PABC沿x轴滚动.设顶点p(x,y)的轨迹方程是y=f(x),则f(x)的最小正周期为 ;y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为 说明:“正方形PABC沿X轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续.类似地,正方形PABC可以沿x轴负方向滚动. |
15. 难度:中等 | |
已知函数f(x)=2cos2x+sin2x-4cosx. (Ⅰ)求的值; (Ⅱ)求f(x)的最大值和最小值. |
16. 难度:中等 | |
已知{an}为等差数列,且a3=-6,a6=0. (Ⅰ)求{an}的通项公式; (Ⅱ)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求数列{bn}的前n项和公式. |
17. 难度:中等 | |
如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EF∥AC,AB=,CE=EF=1. (Ⅰ)求证:AF∥平面BDE; (Ⅱ)求证:CF⊥平面BDE. |
18. 难度:中等 | |
设定函数,且方程f′(x)-9x=0的两个根分别为1,4. (Ⅰ)当a=3且曲线y=f(x)过原点时,求f(x)的解析式; (Ⅱ)若f(x)在(-∞,+∞)无极值点,求a的取值范围. |
19. 难度:中等 | |
已知椭圆C的左、右焦点坐标分别是,,离心率是,直线y=t椭圆C交与不同的两点M,N,以线段为直径作圆P,圆心为P. (Ⅰ)求椭圆C的方程; (Ⅱ)若圆P与x轴相切,求圆心P的坐标; (Ⅲ)设Q(x,y)是圆P上的动点,当T变化时,求y的最大值. |
20. 难度:中等 | |
已知集合Sn={X|X=(x1,x2,…,xn),x1∈{0,1},i=1,2,…,n}(n≥2)对于A=(a1,a2,…an,),B=(b1,b2,…bn,)∈Sn,定义A与B的差为A-B=(|a1-b1|,|a2-b2|,…|an-bn|); A与B之间的距离为 (Ⅰ)当n=5时,设A=(0,1,0,0,1),B=(1,1,1,0,0),求d(A,B); (Ⅱ)证明:∀A,B,C∈Sn,有A-B∈Sn,且d(A-C,B-C)=d(A,B); (Ⅲ)证明:∀A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数 |