1. 难度:中等 | |
定义A-B={x|x∈A且x∉B},若M={x∈N|y=lg(6x-x2)},N={2,3,6},是N-M等于( ) A.{1,2,3,4,5} B.{2,3} C.{1,4,5} D.{6} |
2. 难度:中等 | |
设复数z满足关系:z+||=2+i,那么z等于( ) A.-+i B.+i C.--i D.-i |
3. 难度:中等 | |
给出如下三个命题: ①若“p且q”为假命题,则p、q均为假命题; ②命题“若x≥2且y≥3,则x+y≥5”的否命题为“若x<2且y<3,则x+y<5”; ③四个实数a、b、c、d依次成等比数列的必要而不充分条件是ad=bc; ④在△ABC中,“A>45°”是“”的充分不必要条件. 其中不正确的命题的个数是( ) A.4 B.3 C.2 D.1 |
4. 难度:中等 | |
在棱长为2的正方体AC1中,G是AA1的中点,则BD到平面GB1D1的距离是( ) A. B. C. D. |
5. 难度:中等 | |
在对两个变量x,y进行线性回归分析时,有下列步骤: ①对所求出的回归直线方程作出解释; ②收集数据(xi,yi),i=1,2,…,n; ③求线性回归方程; ④求相关系数; ⑤根据所搜集的数据绘制散点图. 如果根据可形性要求能够作出变量x,y具有线性相关结论,则在下列操作顺序中正确的是( ) A.①②⑤③④ B.③②④⑤① C.②④③①⑤ D.②⑤④③① |
6. 难度:中等 | |
若双曲线=1(a>b>0)的左右焦点分别为F1、F2,线段F1F2被抛物线y2=2bx的焦点分成7:5的两段,则此双曲线的离心率为( ) A. B. C. D. |
7. 难度:中等 | |
已知数列{an}为等差数列,若,且它们的前n项和Sn有最大值,则使得Sn>0的n的最大值为( ) A.11 B.19 C.20 D.21 |
8. 难度:中等 | |||||||||||||
某服装加工厂某月生产A、B、C三种产品共4000件,为了保证产品质量,进行抽样检验,根据分层抽样的结果,企业统计员制作了如下的统计表格:
A.80 B.800 C.90 D.900 |
9. 难度:中等 | |
已知直线x+y=a与圆x2+y2=4交于A、B两点,O是坐标原点,向量满足,则实数a的值( ) A.2 B.-2 C.或- D.2或-2 |
10. 难度:中等 | |
某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有( ) A.16种 B.36种 C.42种 D.60种 |
11. 难度:中等 | |
已知定义域为R的函数y=f(x)满足f(-x)=-f(x+4),当x>2时,f(x)单调递增,若x1+x2<4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值( ) A.恒大于0 B.恒小于0 C.可能等于0 D.可正可负 |
12. 难度:中等 | |
如图给出的是计算值的一个程序框图,其中判断框中应该填的条件是 . |
13. 难度:中等 | |
如果的展开式中含有非零常数项,则正整数n的最小值为 . |
14. 难度:中等 | |
设不等式组所表示的平面区域为S,则S的面积为 ;若A、B为S内的两个点,则|AB|的最大值为 . |
15. 难度:中等 | |
平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件: 充要条件① ; 充要条件② . (写出你认为正确的两个充要条件) |
16. 难度:中等 | |
已知复数z1=bcosC+(a+c)i,z2=(2a-c)cosB+4i,且z1=z2,其中A、B、C为△ABC的内角,a、b、c为角A、B、C所对的边. (Ⅰ)求角B的大小; (Ⅱ)若,求△ABC的面积. |
17. 难度:中等 | |
一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为x1,x2,记ξ=(x1-3)2+(x2-3)2. (1)分别求出ξ取得最大值和最小值时的概率; (2)求ξ的分布列及数学期望. |
18. 难度:中等 | |
如图,多面体AEDBFC的直观图及三视图如图所示,M,N分别为AF,BC的中点. (1)求证:MN∥平面CDEF; (2)求多面体A-CDEF的体积; (3)求证:CE⊥AF. |
19. 难度:中等 | |
已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an-3. (1)求数列{an}的通项公式; (2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值. |
20. 难度:中等 | |
已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线x-y+b=0是抛物线y2=4x的一条切线. (1)求椭圆的方程; (2)过点的动直线L交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,请说明理由. |
21. 难度:中等 | |
已知函数f(x)=+cx+d(a,c,d∈R)满足f(0)=0,f'(1)=0,且f'(x)≥0在R上恒成立. (1)求a,c,d的值; (2)若,解不等式f'(x)+h(x)<0; (3)是否存在实数m,使函数g(x)=f'(x)-mx在区间[m,m+2]上有最小值-5?若存在,请求出实数m的值;若不存在,请说明理由. |