1. 难度:中等 | |
复数等于( ) A. B.- C.i D.-i |
2. 难度:中等 | |
数列{an}的前n项和为sn,若,则s5等于( ) A.1 B. C. D. |
3. 难度:中等 | |
已知集合A={x|x<a},B={x|1<x<2},且A∪∁RB=R,则实数a的取值范围是( ) A.a≤2 B.a<1 C.a≥2 D.a>2 |
4. 难度:中等 | |
对于向量、、和实数λ,下列命题中真命题是( ) A.若•=0,则=0或=0 B.若λ=0,则λ=0或=0 C.若2=2,则=或=- D.若-=•,则= |
5. 难度:中等 | |
已知函数f(x)=sin (ωx+)(ω>0)的最小正周期为π,则该函数的图象( ) A.关于点(,0)对称 B.关于直线x=对称 C.关于点(,0)对称 D.关于直线x=对称 |
6. 难度:中等 | |
以双曲线的右焦点为圆心,且与其渐近线相切的圆的方程是( ) A.x2+y2-10x+9=0 B.x2+y2-10x+16=0 C.x2+y2+10x+16=0 D.x2+y2+20x+9=0 |
7. 难度:中等 | |
已知f(x)为R上的减函数,则满足f(||)<f(1)的实数x的取值范围是( ) A.(-1,1) B.(0,1) C.(-1,0)∪(0,1) D.(-∞,-1)∪(1,+∞) |
8. 难度:中等 | |
已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是( ) A.m⊂α,n⊂α,m∥β,n∥β⇒α∥β B.α∥β,m⊂α,n⊂α,⇒m∥n C.m⊥α,m⊥n⇒n∥α D.n∥m,n⊥α⇒m⊥α |
9. 难度:中等 | |
把1+(1+x)+(1+x)2+…+(1+x)n展开成关于x的多项式,其各项系数和为an,则等于( ) A. B. C.1 D.2 |
10. 难度:中等 | |
顶点在同一球面上的正四棱柱ABCD-A′B′C′D′中,AB=1,AA′=,则A、C两点间的球面距离为( ) A. B. C. D. |
11. 难度:中等 | |
已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时有( ) A.f′(x)>0,g′(x)>0 B.f′(x)>0,g′(x)<0 C.f′(x)<0,g′(x)>0 D.f′(x)<0,g′(x)<0 |
12. 难度:中等 | |
如图,三行三列的方阵中有9个数aij(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( ) A. B. C. D. |
13. 难度:中等 | |
已知实数x、y满足,则z=2x-y的取值范围是 . |
14. 难度:中等 | |
已知正方形ABCD,则以A、B为焦点,且过C、D两点的椭圆的离心率为 . |
15. 难度:中等 | |
两封信随机投入A、B、C三个空邮箱,则A邮箱的信件数ξ的数学期望Eξ= ; |
16. 难度:中等 | |
中学数学中存在许多关系,比如“相等关系”、“平行关系”等等、如果集合A中元素之间的一个关系“-”满足以下三个条件: (1)自反性:对于任意a∈A,都有a-a; (2)对称性:对于a,b∈A,若a-b,则有b-a; (3)对称性:对于a,b,c∈A,若a-b,b-c,则有a-c、 则称“-”是集合A的一个等价关系、例如:“数的相等”是等价关系,而“直线的平行”不是等价关系(自反性不成立)、请你再列出两个等价关系: . |
17. 难度:中等 | |
在△ABC中,tanA=,tanB=. (I)求角C的大小; (II)若AB边的长为,求BC边的长. |
18. 难度:中等 | |
如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点. (1)求证:AB1⊥面A1BD; (2)求二面角A-A1D-B的大小; (3)求点C到平面A1BD的距离. |
19. 难度:中等 | |
某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a元(1≤a≤3)的管理费,预计当每件商品的售价为x元(8≤x≤9)时,一年的销售量为(10-x)2万件. (1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x); (2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a). |
20. 难度:中等 | |
如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且=. (1)求动点P的轨迹C的方程; (2)过点F的直线交轨迹C于A、B两点,交直线l于点M,已知,,求λ1+λ2的值. |
21. 难度:中等 | |
等差数列{an}的前n项和为sn,,. (1)求数列{an}的通项an与前n项和为sn; (2)设(n∈N+),求证:数列{bn}中任意不同的三项都不可能成为等比数列. |
22. 难度:中等 | |
已知函数f(x)=ex-kx, (1)若k=e,试确定函数f(x)的单调区间; (2)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k的取值范围; (3)设函数F(x)=f(x)+f(-x),求证:F(1)F(2)…F(n)>(n∈N+). |