1. 难度:中等 | |
若cosθ>0,且sin2θ<0,则角θ的终边所在象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
2. 难度:中等 | |
对于0<a<1,给出下列四个不等式: ①②③④.其中成立的是( ) A.①③ B.①④ C.②③ D.②④ |
3. 难度:中等 | |
已知α、β是两个不同的平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点,命题q:α∥β,则p是q的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 |
4. 难度:中等 | |
设复数z满足=( ) A.0 B.1 C. D.2 |
5. 难度:中等 | |
甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,那么恰好有1人解决这个问题的概率是( ) A.p1p2 B.p1(1-p2)+p2(1-p1) C.1-p1p2 D.1-(1-p1)(1-p2) |
6. 难度:中等 | |
已知点A(-2,0)、B(3,0),动点P(x,y)满足=x2,则点P的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线 |
7. 难度:中等 | |
已知函数f(x)=sin(πx-)-1,则下列命题正确的是( ) A.f(x)是周期为1的奇函数 B.f(x)是周期为2的偶函数 C.f(x)是周期为1的非奇非偶函数 D.f(x)是周期为2的非奇非偶函数 |
8. 难度:中等 | |||||||||||||||||||||||
已知随机变量ξ的概率分布如下,则P(ξ=10)=( )
A. B. C. D. |
9. 难度:中等 | |
已知点F1(-,0)、F2(,0),动点P满足|PF2|-|PF1|=2,当点P的纵坐标是时,点P到坐标原点的距离是( ) A. B. C. D.2 |
10. 难度:中等 | |
设A、B、C、D是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到该平面的距离是球半径的一半,则球的体积是( ) A. B. C. D. |
11. 难度:中等 | |
若函数f(x)=sin(ωx+φ)的图象(部分)如图所示,则ω和φ的取值是( ) A.ω=1,φ= B.ω=1,φ=- C.ω=,φ= D.ω=,φ=- |
12. 难度:中等 | |
有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是( ) A.234 B.346 C.350 D.363 |
13. 难度:中等 | |
若经过点P(-1,0)的直线与圆x2+y2+4x-2y+3=0相切,则此直线在y轴上的截距是 . |
14. 难度:中等 | |
= . |
15. 难度:中等 | |
如图,四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底面边长均为2a,且∠A1AD=∠A1AB=60°,则侧棱AA1和截面B1D1DB的距离是 . |
16. 难度:中等 | |
口袋内装有10个相同的球,其中5个球标有数字0,5个球标有数字1,若从袋中摸出5个球,那么摸出的5个球所标数字之和小于2或大于3的概率是 .(用数值作答) |
17. 难度:中等 | |
已知四棱锥P-ABCD,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD,点E为AB中点,点F为PD中点. (1)证明平面PED⊥平面PAB; (2)求二面角P-AB-F的平面角的余弦值. |
18. 难度:中等 | |
设全集U=R. (1)解关于x的不等式|x-1|+a-1>0(a∈R); (2)记A为(1)中不等式的解集,集合B={},若(CUA)∩B恰有3个元素,求a的取值范围. |
19. 难度:中等 | |
设椭圆方程为,过点M(0,1)的直线l交椭圆于点A、B,O是坐标原点,点P满足,点N的坐标为,当l绕点M旋转时,求: (1)动点P的轨迹方程; (2)的最小值与最大值. |
20. 难度:中等 | |
甲方是一农场,乙方是一工厂.由于乙方生产须占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付甲方的情况下,乙方的年利润x(元)与年产量t(吨)满足函数关系.若乙方每生产一吨产品必须赔付甲方s元(以下称s为赔付价格). (1)将乙方的年利润w(元)表示为年产量t(吨)的函数,并求出乙方获得最大利润的年产量; (2)甲方每年受乙生产影响的经济损失金额y=0.002t2(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格s是多少? |
21. 难度:中等 | |
已知函数的最大值不大于,又当 (1)求a的值; (2)设.证明 |
22. 难度:中等 | |
已知函数f(x)=ln(ex+a)(a>0). (1)求函数y=f(x)的反函数y=f-1(x)及f(x)的导数f′(x); (2)假设对任意x∈[ln(3a),ln(4a)],不等式|m-f-1(x)|+ln(f′(x))<0成立,求实 数m的取值范围. |