1. 难度:中等 | |
为了得到函数y=sin(2x-)的图象,只需把函数y=sin(2x+)的图象( ) A.向左平移个长度单位 B.向右平移个长度单位 C.向左平移个长度单位 D.向右平移个长度单位 |
2. 难度:中等 | |
函数f(x)=2sinxcosx是( ) A.最小正周期为2π的奇函数 B.最小正周期为2π的偶函数 C.最小正周期为π的奇函数 D.最小正周期为π的偶函数 |
3. 难度:中等 | |
设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是( ) A. B. C. D.3 |
4. 难度:中等 | |
下列函数中,周期为π,且在上为减函数的是( ) A. B. C. D. |
5. 难度:中等 | |
已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则( ) A.ω=1,φ= B.ω=1,φ=- C.ω=2,φ= D.ω=2,φ=- |
6. 难度:中等 | |
观察(x2)′=2x,(x4)′=4x3,y=f(x),由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( ) A.f(x) B.-f(x) C.g(x) D.-g(x) |
7. 难度:中等 | |
如为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点( ) A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变 B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变 D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 |
8. 难度:中等 | |
将函数f(x)=sin(ωx+φ)的图象向左平移个单位.若所得图象与原图象重合,则ω的值不可能等于( ) A.4 B.6 C.8 D.12 |
9. 难度:中等 | |
将函数y=sinx的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( ) A.y=sin(2x-) B.y=sin(2x-) C.y=sin(x-) D.y=sin(x-) |
10. 难度:中等 | |
函数f(x)=的最小正周期为( ) A. B.π C.2π D.4π |
11. 难度:中等 | |
计算sin137°cos13°+cos103°cos43°的值等于( ) A. B. C. D. |
12. 难度:中等 | |
函数的最小正周期是 . |
13. 难度:中等 | |
观察下列等式: ①cos2α=2cos2α-1; ②cos4α=8cos4α-8cos2α+1; ③cos6α=32cos6α-48cos4α+18cos2α-1; ④cos8α=128cos8α-256cos6α+160cos4α-32cos2α+1; ⑤cos10α=mcos10α-1280cos8α+1120cos6α+ncos4α+pcos2α-1; 可以推测,m-n+p= . |
14. 难度:中等 | |
△ABC中,角A,B,C所对的边分别为a,b,c,若a=,b=2,sinB+cosB=,则角A的大小为 . |
15. 难度:中等 | |
已知函数和g(x)=2cos(2x+φ)+1的图象的对称轴完全相同.若,则f(x)的取值范围是 . |
16. 难度:中等 | |
定义在区间上的函数y=6cosx的图象与y=5tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长为 . |
17. 难度:中等 | |
已知函数f(x)=sin2x-2sin2x (I)求函数f(x)的最小正周期. (II)求函数f(x)的最大值及f(x)取最大值时x的集合. |
18. 难度:中等 | |
在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=. (I)求sinC的值; (Ⅱ)当a=2,2sinA=sinC时,求b及c的长. |
19. 难度:中等 | |
已知函数f(x)=(1+cotx)sin2x+msin(x+)sin(x-). (1)当m=0时,求f(x)在区间上的取值范围; (2)当tana=2时,,求m的值. |
20. 难度:中等 | |
在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足. (Ⅰ)求角C的大小; (Ⅱ)求sinA+sinB的最大值. |
21. 难度:中等 | |
已知函数f(x)=2cos2x+sin2x-4cosx. (Ⅰ)求的值; (Ⅱ)求f(x)的最大值和最小值. |
22. 难度:中等 | |
已知函数f(x)=Asin(3x+ρ)(A>0,x∈(-∞,+∞),0<ρ<π)在时取得最大值4. (1)求f(x)的最小正周期; (2)求f(x)的解析式; (3)若,求sinα. |
23. 难度:中等 | |
f(x)=3sin(ωx+),ω>0,x∈(-∞,+∞),且以为最小周期. (1)求f(0); (2)求f(x)的解析式; (3)已知f(+)=,求sinα的值. |
24. 难度:中等 | |
已经函数 (Ⅰ)函数f(x)的图象可由函数g(x)的图象经过怎样变化得出? (Ⅱ)求函数h(x)=f(x)-g(x)的最小值,并求使用h(x)取得最小值的x的集合. |
25. 难度:中等 | |
已知函数f(x)=sin2x-2sin2x. (Ⅰ)求函数f(x)的最大值; (Ⅱ)求函数f(x)的零点的集合. |