1. 难度:中等 | |
设不等式组在直角坐标系中所表示的区域的面积为S,则当k>1时,的最小值为 . |
2. 难度:中等 | |
在△ABC中,角A,B,C的对边分别为a,b,c.,c=2bcosA. (Ⅰ)求证:A=B; (Ⅱ)若△ABC的面积S=,求c的值. |
3. 难度:中等 | |
已知四棱锥P-ABCD的底面是菱形.PB=PD,E为PA的中点. (Ⅰ)求证:PC∥平面BDE; (Ⅱ)求证:平面PAC⊥平面BDE. |
4. 难度:中等 | |
某高校在2010年的自主招生考试中随机抽取了100名学生的笔试成绩,按成绩分组:第一组[160,165),第二组[165,170),第三组[170,175),第四组[175,180),第五组[180,185)得到的频率分布直方图如图所示, (1)求第三、四、五组的频率; (2)为了以选拔出最优秀的学生,学校决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试. (3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第四组至少有一名学生被甲考官面试的概率. |
5. 难度:中等 | |
已知函数f(x)=x3+ax2-x+c,且. (Ⅰ)求a的值; (Ⅱ)求函数f(x)的单调区间; (Ⅲ)设函数g(x)=(f(x)-x3)•ex,若函数g(x)在x∈[-3,2]上单调递增,求实数c的取值范围. |
6. 难度:中等 | |
已知椭圆C的中心在坐标原点,焦点在x轴上,离心率为,椭圆C上的点到焦点距离的最大值为3. (Ⅰ)求椭圆C的标准方程; (Ⅱ)若过点P(0,m)的直线l与椭圆C交于不同的两点A,B,且,求实数m的取值范围. |
7. 难度:中等 | |
对于n∈N*(n≥2),定义一个如下数阵: 其中对任意的1≤i≤n,1≤j≤n,当i能整除j时,aij=1;当i不能整除j时,aij=0. (Ⅰ)当n=4时,试写出数阵A44; (Ⅱ)设.若[x]表示不超过x的最大整数, 求证:=. |
8. 难度:中等 | |
已知复数z满足(1-i)z=2,则z为( ) A.1+i B.1-i C.-1+i D.-1-i |
9. 难度:中等 | |
命题“∃x∈R,使log2x≤0成立”的否定为( ) A.∃x∈R,使log2x>0成立 B.∃x∈R,使log2x≥0成立 C.∀x∈R,均有log2x≥0成立 D.∀x∈R,均有log2x>0成立 |
10. 难度:中等 | |
已知函数f(x)是定义在R上的偶函数,且当x>0时,f(x)=ln(x+1),则函数f(x)的大致图象为( ) A. B. C. D. |
11. 难度:中等 | |
给定下列四个命题: ①若一个平面内的两条直线与另一个平面都平行,则这两个平面平行; ②若两个平面都垂直于同一条直线,则这两个平面平行; ③若两个平面互相垂直,则在其中一个平面内的直线垂直另外一个平面; ④若两个平面互相平行,则在其中一个平面内的直线平行另外一个平面. 其中为真命题的是( ) A.①和② B.②和③ C.③和④ D.②和④ |
12. 难度:中等 | |
已知函数y=sin(ωx+φ)的部分图象如图所示,则点P(ω,φ)的坐标为( ) A. B. C. D. |
13. 难度:中等 | |
若如图的程序框图输出的S是126,则①应为( ) A.n≤5 B.n≤6 C.n≤7 D.n≤8 |
14. 难度:中等 | |
已知函数,那么在下列区间中含有函数f(x)零点的为( ) A. B. C. D.(1,2) |
15. 难度:中等 | |
空间点到平面的距离如下定义:过空间一点作平面的垂线,该点和垂足之间的距离即为该点到平面的距离.已知平面α,β,γ两两互相垂直,点A∈α,点A到β,γ的距离都是3,点P是α上的动点,满足p到β的距离是到p到点A距离的2倍,则点P的轨迹上的点到γ的距离的最小值为( ) A. B.3-2 C.6- D.3- |
16. 难度:中等 | |
抛物线y2=8x的焦点坐标是 |
17. 难度:中等 | |
在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于= . |
18. 难度:中等 | |
已知向量,,满足-+2=,且⊥,||=2,||=1,则||= . |
19. 难度:中等 | |
已知,,则sinα+cosα= . |
20. 难度:中等 | |
设且,则a= ;f(f(2))= . |