1. 难度:中等 | |
设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则图中的阴影部分表示的集合为( ) A.{2} B.{4,6} C.{1,3,5} D.{4,6,7,8} |
2. 难度:中等 | |
等差数列{an}的前n项和为Sn,若a2+a7+a12=30,则S13的值是( ) A.130 B.65 C.70 D.75 |
3. 难度:中等 | |
“2a>2b”是“log2a>log2b”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 |
4. 难度:中等 | |
若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC( ) A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形 D.可能是锐角三角形,也可能是钝角三角形 |
5. 难度:中等 | |
直线x+(a2+1)y+1=0(a∈R)的倾斜角的取值范围是( ) A.[0,] B.[,π) C.[0,]∪(,π) D.[,)∪[,π) |
6. 难度:中等 | |
有编号分别为1,2,3,4,5的5个红球和5个黑球,从中取出4个,则取出的球的编号互不相同的概率为( ) A. B. C. D. |
7. 难度:中等 | |
已知直线ax+by+c=0与圆o:x2+y2=1交于A、B两点,且|AB|=,则•=( ) A. B.- C. D.- |
8. 难度:中等 | |
若如图的程序框图输出的S是126,则①应为( ) A.n≤5 B.n≤6 C.n≤7 D.n≤8 |
9. 难度:中等 | |
如图,在透明塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,将容器底面一边BC固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法: ①水的部分始终呈棱柱状; ②水面四边形EFGH的面积不改变; ③棱A1D1始终与水面EFGH平行; ④当E∈AA1时,AE+BF是定值. 其中正确说法是( ) A.①②③ B.①③ C.①②③④ D.①③④ |
10. 难度:中等 | |
函数f(x)=x2-bx+a的图象如图所示,则函数g(x)=lnx+f′(x)的零点所在的区间是( ) A.(,) B.(,1) C.(1,2) D.(2,3) |
11. 难度:中等 | |
若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为 . |
12. 难度:中等 | |
若命题“存在实数x,使x2+ax+1<0”的否定是假命题,则实数a的取值范围为 . |
13. 难度:中等 | |
如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是 . |
14. 难度:中等 | |
将全体正整数排成一个三角形数阵:按照以上排列的规律,第n行(n≥3)从左向右的第3个数为 . |
15. 难度:中等 | |
函数f(x)=2sin(ωx+φ)的部分图象如下图所示,该图象与y轴交于点F(0,1),与x轴交于点B,C,M为最高点,且三角形MBC的面积为π. (Ⅰ)求函数f(x)的解析式; (Ⅱ)若,求的值. |
16. 难度:中等 | |
已知等差数列{an}中,a2=3,a4+a6=18. (Ⅰ)求数列{an}的通项公式; (Ⅱ)若数列{bn}满足:bn+1=2bn,并且b1=a5,试求数列{bn}的前n项和Sn. |
17. 难度:中等 | |
如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,D、E分别为A1B1、AA1的中点,点F在棱AB上,且. (Ⅰ)求证:EF∥平面BDC1; (Ⅱ)在棱AC上是否存在一个点G,使得平面EFG将三棱柱分割成的两部分体积之比为1:15,若存在,指出点G的位置;若不存在,说明理由. |
18. 难度:中等 | |||||||||||||
某中学共有学生2000人,各年级男,女生人数如下表:
(1)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少名? (2)已知y≥245,z≥245,求高三年级中女生比男生多的概率. |
19. 难度:中等 | |
某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x元时,销售量可达到15一O.1x万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为l0.假设不计其它成本,即销售每套丛书的利润=售价 一 供货价格.问: (I)每套丛书定价为100元时,书商能获得的总利润是多少万元? (Ⅱ)每套丛书定价为多少元时,单套丛书的利润最大? |
20. 难度:中等 | |
已知函数,其中实数a,b是常数. (Ⅰ)已知a∈{0,1,2},b∈{0,1,2},求事件A:“f(1)≥0”发生的概率; (Ⅱ)若f(x)是R上的奇函数,g(a)是f(x)在区间[-1,1]上的最小值,求当|a|≥1时g(a)的解析式; (Ⅲ)记y=f(x)的导函数为f′(x),则当a=1时,对任意x1∈[0,2],总存在x2∈[0,2]使得f(x1)=f′(x2),求实数b的取值范围. |