1. 难度:中等 | |
下列不等式: ①-x2+x+1≥;0 ②; ③x2+6x+10>0; ④2x2-3x+4<1. 其中解集为R的是( ) A.④ B.③ C.② D.① |
2. 难度:中等 | |
已知等差数列{an}中,S10=120,那么a2+a9等于( ) A.12 B.24 C.36 D.48 |
3. 难度:中等 | |
在△ABC中,角A、B、C所对的边分别是a、b、c,并且a=1,b=,A=30°,则c的值为( ) A.2 B.1 C.1或2 D.或2 |
4. 难度:中等 | |
已知等比数列{an}满足a1+a2=3,a2+a3=6,则a7=( ) A.64 B.81 C.128 D.243 |
5. 难度:中等 | |
记等差数列的前n项和为Sn,若S2=4,S4=20,则该数列的公差d=( ) A.2 B.3 C.6 D.7 |
6. 难度:中等 | |
如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,点D是AB的中点,则直线B1B和平面CDB1所成角的正切值为( ) A. B. C. D. |
7. 难度:中等 | |
某荒漠上有相距4km的M,N两点,要围垦出以MN为一条对角线的平行四边形区域,建成农艺园.按照规划,围墙总长为12km.在设计图纸上,建立平面直角坐标系如图(O为MN的中点),那么平行四边形另外两个顶点P,Q的坐标满足的方程是( ) A. B. C. D. |
8. 难度:中等 | |
在R上定义运算⊙:x⊙y=x(1-y).若不等式(x-a)⊙(x+a)<1对任意实数x成立,则( ) A.-1<a<1 B.0<a<2 C. D. |
9. 难度:中等 | |
如果双曲线上一点P到焦点F1的距离等于7,那么点P到另一个焦点F2的距离是 . |
10. 难度:中等 | |
若F1,F2是椭圆的两个焦点,P是椭圆上一点,当PF1⊥PF2,且∠PF1F2=30,则椭圆的离心率为 . |
11. 难度:中等 | |
已知直线l与抛物线y2=8x交于A、B两点,且l经过抛物线的焦点F,A点的坐标为(8,8),则线段AB的中点到准线的距离是 . |
12. 难度:中等 | |
已知A(4,1,3),B(2,3,1),C(3,7,-5),点P(x,-1,3)在平面ABC内,则x= . |
13. 难度:中等 | |
等比数列{an}的前n项和为sn,且4a1,2a2,a3成等差数列.若a1=1,则s4= . |
14. 难度:中等 | |
实数x,y满足不等式组所确定的可行域内,若目标函数z=-x+y仅在点(3,2)取得最大值,则正实数k的取值范围是 . |
15. 难度:中等 | |
在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知, (1)求cos(B+C)的值; (2)若a=2,,求b的值. |
16. 难度:中等 | |
如图,在长方体ABCD-A1B1C1D1中,底面ABCD是正方形,E是DD1的中点. (1)求证:AC⊥B1D; (2)若B1D⊥平面ACE,求的值. |
17. 难度:中等 | |
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2.E是CC1的中点, (1)求锐二面角D-B1E-B的余弦值. (2)试判断AC与面DB1E的位置关系,并说明理由. (3)设M是棱AB上一点,若M到面DB1E的距离为,试确定点M的位置. |
18. 难度:中等 | |
设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列是公差为d的等差数列. (Ⅰ)求数列{an}的通项公式(用n,d表示); (Ⅱ)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求c的最大值. |
19. 难度:中等 | |
设直线l:y=x+1与椭圆相交于A、B两个不同的点,与x轴相交于点F. (Ⅰ)证明:a2+b2>1; (Ⅱ)若F是椭圆的一个焦点,且,求椭圆的方程. |
20. 难度:中等 | |
已知抛物线y2=4x,点F是抛物线的焦点,点M在抛物线上,O为坐标原点. (1)当 时,求点M的坐标; (2)求 的最大值; (3)设点B(0,1),是否存在常数λ及定点H,使得 恒成立?若存在,求出λ的值及点H的坐标;若不存在,说明理由. |