相关试卷
当前位置:首页 > 高中数学试卷 > 试卷信息
2009-2010学年安徽省合肥一中高二(上)期末数学复习试卷(理科)(解析版)
一、选择题
详细信息
1. 难度:中等
以下命题:
①直角三角形的一边为轴旋转一周所得的旋转体是圆锥;
②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;
③圆柱、圆锥、圆台的底面都是圆;
④一个平面截圆锥,得到一个圆锥和一个圆台.
其中正确命题的个数为( )
A.O
B.1
C.2
D.3
详细信息
2. 难度:中等
如图是由一些相同的小正方体构成的主体图形的三种视图,构成这个立体图形的小正方体的个数是( )
manfen5.com 满分网
A.3
B.4
C.5
D.6
详细信息
3. 难度:中等
manfen5.com 满分网如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )
A.2+manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.1+manfen5.com 满分网
详细信息
4. 难度:中等
一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为h1,h2,h,则h1:h2:h=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
详细信息
5. 难度:中等
若圆x2+y2-4x-4y-10=0上至少有三个不同的点到直线l:ax+by=0的距离为manfen5.com 满分网,则直线l的倾斜角的取值范围是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
详细信息
6. 难度:中等
设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若manfen5.com 满分网=0,则manfen5.com 满分网的值为( )
A.3
B.4
C.6
D.9
详细信息
7. 难度:中等
设F1,F2分别是双曲线manfen5.com 满分网的左、右焦点.若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,则双曲线离心率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
详细信息
8. 难度:中等
已知F1、F2是椭圆的两个焦点,满足manfen5.com 满分网manfen5.com 满分网=0的点M总在椭圆内部,则椭圆离心率的取值范围是( )
A.(0,1)
B.(0,manfen5.com 满分网]
C.(0,manfen5.com 满分网
D.[manfen5.com 满分网,1)
详细信息
9. 难度:中等
设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A,B两点,点Q与点P关于y轴对称,O为坐标原点,若manfen5.com 满分网manfen5.com 满分网,则点P的轨迹方程是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
详细信息
10. 难度:中等
设O为坐标原点,F为抛物线y2=4x的焦点,A是抛物线上一点,若manfen5.com 满分网=-4则点A的坐标是( )
A.(2,±2manfen5.com 满分网
B.(1,±2)
C.(1,2)
D.(2,2manfen5.com 满分网
详细信息
11. 难度:中等
直线l经过A(2,1)、B(1,m2)(m∈R)两点,那么直线l的倾斜角的取值范围是( )
A.[0,π)
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
详细信息
12. 难度:中等
设e1,e2分别为具有公共焦点F1与F2的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足manfen5.com 满分网,则manfen5.com 满分网的值为( )
A.manfen5.com 满分网
B.1
C.2
D.不确定
二、填空题
详细信息
13. 难度:中等
一条直线过点P(3,2)且与x轴、y轴的正半轴分别交于A、B两点,则当S△OAB面积最小时,直线方程为   
详细信息
14. 难度:中等
点M(x1,y1)是直线l:f(x,y)=0上一点,直线外有一点N(x2,y2),则方程f(x,y)-f(x1,y1)-f(x2,y2)=0表示的图形为   
详细信息
15. 难度:中等
已知⊙O的方程是x2+y2-2=0,⊙O'的方程是x2+y2-8x+10=0,由动点P向⊙O和⊙O'所引的切线长相等,则动点P的轨迹方程是   
详细信息
16. 难度:中等
如图,A,B是直线l上的两点,且AB=2.两个半径相等的动圆分别与l相切于A,B点,C是这两个圆的公共点,则圆弧AC,CB与线段AB围成图形面积S的取值范围是   
manfen5.com 满分网
详细信息
17. 难度:中等
如图,在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ABC=90°,AC=6,BC=CC1=manfen5.com 满分网,P是BC1上一动点,则CP+PA1的最小值是   
manfen5.com 满分网
详细信息
18. 难度:中等
已知抛物线y2=2px(p>0),过定点T(p,0)作两条互相垂直的直线l1,l2,若l1与抛物线交与P、Q,若l2与抛物线交与M、N,l1的斜率为k.某同学正确地已求出了弦PQ的中点为manfen5.com 满分网,请写出弦MN的中点   
三、解答题
详细信息
19. 难度:中等
如图所示,已知直线l:3x+4y-12=0与x,y轴的正半轴分别交于A,B两点,直线l1和AB,OA分别交于C,D,且平分△AOB的面积,求CD的最小值.

manfen5.com 满分网
详细信息
20. 难度:中等
已知manfen5.com 满分网,O是原点,点P(x,y)的坐标满足manfen5.com 满分网
(1)求manfen5.com 满分网的最大值.;(2)求manfen5.com 满分网的取值范围.
详细信息
21. 难度:中等
在直角坐标系xOy中,以O为圆心的圆与直线:x-manfen5.com 满分网y=4相切
(1)求圆O的方程
(2)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求manfen5.com 满分网的取值范围.
详细信息
22. 难度:中等
已知中心在原点,长轴在x轴上的椭圆的一个顶点是点(0,manfen5.com 满分网),离心率为manfen5.com 满分网,左、右焦点分别为F1和F2
(1)求椭圆方程;
(2)点M在椭圆上,求△MF1F2面积的最大值;
(3)试探究椭圆上是否存在一点P,使manfen5.com 满分网,若存在,请求出点P的坐标;若不存在,请说明理由.
详细信息
23. 难度:中等
如图所示的几何体ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中点,
(Ⅰ)求证:DM⊥EB;
(Ⅱ)设二面角M-BD-A的平面角为β,求cosβ.

manfen5.com 满分网
详细信息
24. 难度:中等
已知M(-3,0)﹑N(3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m(m≥-1,m≠0).
(1)求P点的轨迹方程并讨论轨迹是什么曲线?
(2)若manfen5.com 满分网,P点的轨迹为曲线C,过点Q(2,0)斜率为k1的直线ℓ1与曲线C交于不同的两点A﹑B,AB中点为R,直线OR(O为坐标原点)的斜率为k2,求证k1k2为定值;
(3)在(2)的条件下,设manfen5.com 满分网,且λ∈[2,3],求ℓ1在y轴上的截距的变化范围.
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.