1. 难度:中等 | |
已知二次函数f(x)=x2+bx+c(b、c∈R),不论α、β为何实数,恒有f(sinα)≥0,f(2+cosβ)≤0. (1)求证:b+c=-1; (2)求证:c≥3; (3)若函数f(sinα)的最大值为8,求b、c的值. |
2. 难度:中等 | |
设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是( ) A.1 B.3 C.4 D.8 |
3. 难度:中等 | |
函数f(x)=log2(2x)与在同一坐标系下的图象是( ) A. B. C. D. |
4. 难度:中等 | |
“若一个数不是负数,则它的平方不是正数”和这个命题真值相同的命题( ) A.若一个数是负数,则它的平方是正数 B.若一个数的平方不是正数,则它不是负数 C.若一个数的平方是正数,则它是负数 D.若一个数不是负数,则它的平方是非负数 |
5. 难度:中等 | |
若非空集合S⊆{1,2,3,4,5},且若a∈S,则必有6-a∈S,则所有满足上述条件的集合S共( ) A.6个 B.7个 C.8个 D.9个 |
6. 难度:中等 | |
在R上定义运算⊙:x⊙y=x(1-y).若不等式(x-a)⊙(x+a)<1对任意实数x成立,则( ) A.-1<a<1 B.0<a<2 C. D. |
7. 难度:中等 | |
设a,b∈R,a2+2b2=6,则a+b的最小值是( ) A.-2 B.- C.-3 D.- |
8. 难度:中等 | |
已知命题p:∃x∈(-∞,0),2x<3x;命题q:∀x∈(0,),tanx>sinx,则下列命题为真命题的是( ) A.p∧q B.p∨(﹁q) C.(﹁p)∧q D.p∧(﹁q) |
9. 难度:中等 | |
函数y=ln的大致图象为( ) A. B. C. D. |
10. 难度:中等 | |
设0<x<,则“x sin2x<1”是“x sinx<1”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
11. 难度:中等 | |
已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为,则使该生产厂家获得最大年利润的年产量为( ) A.13万件 B.11万件 C.9万件 D.7万件 |
12. 难度:中等 | |
关于x的不等式|x-1|+|x-2|>a2+a+1的解集为R,则a的取值范围是( ) A.(0,1) B.(-1,0) C.(1,2) D.(-∞,-1) |
13. 难度:中等 | |
定义域为R的函数f(x)对任意x都有f(2+x)=f(2-x),且其导函数f′(x)满足,则当2<a<4时,有( ) A.f(2a)<f(2)<f(log2a) B.f(2)<f(2a)<f(log2a) C.f(2)<f(log2a)<f(2a) D.f(log2a)<f(2a)<f(2) |
14. 难度:中等 | |
已知直线ax+by-2=0(a>0,b>0)和函数f(x)=ax-2+1(a>0且a≠1)的图象恒过同一个定点,则的最小值为 . |
15. 难度:中等 | |
若对任意x>0,≤a恒成立,则a的取值范围是 . |
16. 难度:中等 | |
实数x,y满足,则的取值范围为 . |
17. 难度:中等 | |
请阅读下列材料:若两个正实数a1,a2满足a12+a22=1,那么a1+a2.证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以△≤0,从而得4(a1+a2)2-8≤0,所以a1+a2.根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为 . |
18. 难度:中等 | |
已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m-2)x+1=0无实根.若p或q为真,p且q为假.求实数m的取值范围. |
19. 难度:中等 | |
已知关于x的不等式(k2+4k-5)x2+4(1-k)x+3>0对任何实数x都成立,求实数k的取值范围. |
20. 难度:中等 | |
设函数. (1)求函数f(x)的单调区间、极值. (2)若当x∈[a+1,a+2]时,恒有|f′(x)|≤a,试确定a的取值范围. |