1. 难度:中等 | |
设0<x<,则“x sin2x<1”是“x sinx<1”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
2. 难度:中等 | |
函数的反函数是( ) A.y=e2x+1-1(x>0) B.y=e2x+1+1(x>0) C.y=e2x+1-1(x∈R) D.y=e2x+1+1(x∈R) |
3. 难度:中等 | |
展开式中不含x4项的系数的和为( ) A.-1 B.0 C.1 D.2 |
4. 难度:中等 | |
△ABC中,点D在边AB上,CD平分∠ACB,若=a,=b,|a|=1,|b|=2,则=( ) A.a+b B.a+b C.a+b D.a+b |
5. 难度:中等 | |
设双曲线的-个焦点为F;虚轴的-个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ) A. B. C. D. |
6. 难度:中等 | |
一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为P1和P2.则( ) A.P1=P2 B.P1<P2 C.P1>P2 D.以上三种情况都有可能 |
7. 难度:中等 | |
图是函数y=Asin(ωx+φ)(x∈R)在区间上的图象,为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点( ) A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变 B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变 D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 |
8. 难度:中等 | |
设不等式组所表示的平面区域是Ω1,平面区域是Ω2与Ω1关于直线3x-4y-9=0对称,对于Ω1中的任意一点A与Ω2中的任意一点B,|AB|的最小值等于( ) A. B.4 C. D.2 |
9. 难度:中等 | |
某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( ) A.504种 B.960种 C.1008种 D.1108种 |
10. 难度:中等 | |
有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是( ) A.(0,) B.(1,) C.(,) D.(0,) |
11. 难度:中等 | |
已知z=2x-y,式中变量x,y满足约束条件,则z的最大值为 . |
12. 难度:中等 | |
某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于 . |
13. 难度:中等 | |
如图,二面角α-l-β的大小是60°,线段AB⊂α.B∈l,AB与l所成的角为30°.则AB与平面β所成的角的正弦值是 . |
14. 难度:中等 | |
已知数列{an}满足a1=33,an+1-an=2n,则的最小值为 . |
15. 难度:中等 | |
已知以F为焦点的抛物线y2=4x上的两点A、B满足,则弦AB的中点到准线的距离为 . |
16. 难度:中等 | |
在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=. (I)求sinC的值; (Ⅱ)当a=2,2sinA=sinC时,求b及c的长. |
17. 难度:中等 | |
设S是不等式x2-x-6≤0的解集,整数m,n∈S. (1)记使得“m+n=0成立的有序数组(m,n)”为事件A,试列举A包含的基本事件; (2)设ξ=m2,求ξ的分布列及其数学期望Eξ. |
18. 难度:中等 | |
如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点. (Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值; (Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论. |
19. 难度:中等 | |
已知数列{an}的前n项和Sn=(n2+n)•3n. (Ⅰ)求;(Ⅱ)证明:++…+>3n. |
20. 难度:中等 | |
已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4. (1)求椭圆的方程; (2)设直线l与椭圆相交于不同的两点A,B,已知点A的坐标为(-a,0),点Q(0,y)在线段AB的垂直平分线上,且,求y的值. |
21. 难度:中等 | |
已知函数f(x)=(a+1)lnx+ax2+1 (1)讨论函数f(x)的单调性; (2)设a<-1.如果对任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|,求a的取值范围. |
22. 难度:中等 | |
设a∈R,函数f(x)=ax3-3x2. (Ⅰ)若x=2是函数y=f(x)的极值点,求a的值; (Ⅱ)若函数g(x)=f(x)+f'(x),x∈[0,2],在x=0处取得最大值,求a的取值范围. |