1. 难度:中等 | |
设集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R}.若A⊆B,则实数a,b必满足( ) A.|a+b|≤3 B.|a+b|≥3 C.|a-b|≤3 D.|a-b|≥3 |
2. 难度:中等 | |
若复数z满足(1-i)z=1+ai,且复数z在复平面上对应的点位于第二象限,则实数a的取值范围是( ) A.a>1 B.-1<a<1 C.a<-1 D.a<-1或a>1 |
3. 难度:中等 | |
对于使-x2+2x≤M成立的所有常数M中,我们把M的最小值1叫做-x2+2x的上确界,若a,b∈R+,且a+b=1,则的上确界为( ) A. B. C. D.-4 |
4. 难度:中等 | |
若直线2x-y+c=0按向量=(1,-1)平移后与圆x2+y2=5相切,则c的值为( ) A.8或-2 B.6或-4 C.4或-6 D.2或-8 |
5. 难度:中等 | |
在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( ) A.10 B.11 C.12 D.15 |
6. 难度:中等 | |
如图,半圆的直径AB=6,O为圆心,C为半圆上不同于A、B的任意一点,若P为半径OC上的动点,则的最小值为( ) A. B.9 C. D.-9 |
7. 难度:中等 | |
如图,矩形ABCD中,AB=3,BC=4,沿对角线BD将△ABD折起,使A点在平面BCD内的射影落在BC边上,若二面角C-AB-D的平面角大小为θ,则sinθ的值等于( ) A. B. C. D. |
8. 难度:中等 | |
已知tana=-,且tan(sina)>tan(cosa)则sina的值为( ) A. B. C. D. |
9. 难度:中等 | |
设函数y=f(x)在(-∞,+∞)内有定义.对于给定的正数K,定义函数 取函数f(x)=2-x-e-x.若对任意的x∈(+∞,-∞),恒有fk(x)=f(x),则( ) A.K的最大值为2 B.K的最小值为2 C.K的最大值为1 D.K的最小值为1 |
10. 难度:中等 | |
已知二面角α-l-β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为( A.1 B.2 C. D.4 |
11. 难度:中等 | |
已知函数f(x)=logax,其反函数为f-1(x),若f-1(2)=9,则f()+f(6)的值为( ) A.2 B.1 C. D. |
12. 难度:中等 | |
设双曲线的-个焦点为F;虚轴的-个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ) A. B. C. D. |
13. 难度:中等 | |
展开式中不含 x4项的系数的和为 . |
14. 难度:中等 | |
已知{an}是等比数列,= . |
15. 难度:中等 | |
已知球O的表面积为16π,且球心O在60°的二面角α-l-β内部,若平面α与球相切于M点,平面β与球相截,且截面圆O1的半径为,P为圆O1的圆周上任意一点,则M、P两点的球面距离的最值为 . |
16. 难度:中等 | |
函数的图象为C,如下结论中正确的是 .(写出所有正确结论的编号) ①图象C关于直线对称; ②图象C关于点对称; ③函数f(x)在区间内是增函数; ④由y=3sin2x的图角向右平移个单位长度可以得到图象C. |
17. 难度:中等 | |
在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=. (I)求sinC的值; (Ⅱ)当a=2,2sinA=sinC时,求b及c的长. |
18. 难度:中等 | |||||||||||||
在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q1为0.25,在B处的命中率为q2,该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为:
(2)求随机变量ξ的数学期望Eξ; (3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小. |
19. 难度:中等 | |
已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又知BA1⊥AC1. (I)求证:AC1⊥平面A1BC; (II)求CC1到平面A1AB的距离; (III)求二面角A-A1B-C的大小. |
20. 难度:中等 | |
已知数列{an},其前n项和Sn满足Sn+1=2λSn+1(λ是大于0的常数),且a1=1,a3=4. (1)求λ的值; (2)求数列{an}的通项公式an; (3)设数列{nan}的前n项和为Tn,试比较的大小. |
21. 难度:中等 | |
已知双曲线C:=1(a>0,b>0)的离心率为,右准线方程为x= (I)求双曲线C的方程; (Ⅱ)设直线l是圆O:x2+y2=2上动点P(x,y)(xy≠0)处的切线,l与双曲线C交于不同的两点A,B,证明∠AOB的大小为定值. |
22. 难度:中等 | |
设常数a≥0,函数f(x)=x-ln2x+2alnx-1 (1)令g(x)=xf'(x)(x>0),求g(x)的最小值,并比较g(x)的最小值与0的大小; (2)求证:f(x)在(0,+∞)上是增函数; (3)求证:当x>1时,恒有x>ln2x-2alnx+1. |