1. 难度:中等 | |
集合A={x|-1≤x≤2},B={x|x<1},则A∩∁RB=( ) A.{x|x>1} B.{x|x≥1} C.{x|1<x≤2} D.{x|1≤x≤2} |
2. 难度:中等 | |
执行框图,若输出结果为,则输入的实数x的值是( ) A. B. C. D. |
3. 难度:中等 | |
在复平面内,复数z=cos3+isin3(i是虚数单位)对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
4. 难度:中等 | |
在△ABC中,“”是“△ABC为钝角三角形”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 |
5. 难度:中等 | |
设等比数列{an}的公比q=2,前n项和为Sn,则=( ) A.2 B.4 C. D. |
6. 难度:中等 | |
用a、b、c表示三条不同的直线,y表示平面,给出下列命题:( ) ①若a∥b,b∥c,则a∥c; ②若a⊥b,b⊥c,则a⊥c; ③若a∥y,b∥y,则a∥b; ④若a⊥y,b⊥y,则a∥b. A.①② B.②③ C.①④ D.③④ |
7. 难度:中等 | |
过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点,如果x1+x2=6,那么|AB|=( ) A.6 B.8 C.9 D.10 |
8. 难度:中等 | |
定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,a=f(3),b=f(),c=f(2),则a,b,c大小关系是( ) A.a>b>c B.a>c>b C.b>c>a D.c>b>a |
9. 难度:中等 | |
已知函数f(x)=x2-5x+4,则不等式组对应的平面区域为( ) A. B. C. D. |
10. 难度:中等 | |
若函数f(x)满足:“对于区间(1,2)上的任意实数x1,x2(x1≠x2),|f(x2)-f(x1)|<|x2-x1|恒成立”,则称f(x)为优美函数.在下列四个函数中,优美函数是( ) A.f(x)=|x| B. C.f(x)=2 D.f(x)=x2 |
11. 难度:中等 | |
已知向量,,且∥,则x= . |
12. 难度:中等 | |
12、用若干个体积为1的正方体搭成一个几何体,其正视图、侧视图都是如图所示的图形,则这个几何体的最大体积与最小体积的差是 . |
13. 难度:中等 | |
的展开式中含x项的二项式系数为 .(用数字作答) |
14. 难度:中等 | |
有下列各式:,,,…则按此规律可猜想此类不等式的一般形式为: . |
15. 难度:中等 | |
已知函数y=ax-1(a>0,且a≠1)的图象恒过定点A,若点A在一次函数y=mx+n的图象上,其中m,n>0,则+的最小值为 . |
16. 难度:中等 | |
函数y=ax2-2x图象上有且仅有两个点到x轴的距离等于1,则a的取值范围是 . |
17. 难度:中等 | |
设a1,a2,…,an 是1,2,…,n 的一个排列,把排在ai 的左边且比ai 小的数的个数称为ai 的顺序数(i=1,2,…,n).如在排列6,4,5,3,2,1中,5的顺序数为1,3的顺序数为0.则在由1、2、3、4、5、6、7、8这八个数字构成的全排列中,同时满足8的顺序数为2,7的顺序数为3,5的顺序数为3的不同排列的种数为 .(结果用数字表示) |
18. 难度:中等 | |
已知函数(0<θ<π)在x=π处取最小值. (1)求θ的值; (2)在△ABC中,a,b,c分别为角A,B,C的对边,已知,求角C. |
19. 难度:中等 | |
某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行. (1)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是“世博会会徽”卡的概率是,求抽奖者获奖的概率; (2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值. |
20. 难度:中等 | |
在四棱锥P-ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=1,AD=2,PA⊥底面ABCD,PD与底面成30°角. (1)若AE⊥PD,E为垂足,求证:BE⊥PD; (2)求异面直线AE与CD所成的角的余弦值; (3)求A点到平面PCD的距离. |
21. 难度:中等 | |
已知点P是⊙O:x2+y2=9上的任意一点,过P作PD垂直x轴于D,动点Q满足. (1)求动点Q的轨迹方程; (2)已知点E(1,1),在动点Q的轨迹上是否存在两个不重合的两点M、N,使(O是坐标原点),若存在,求出直线MN的方程,若不存在,请说明理由. |
22. 难度:中等 | |
已知函数. (1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围; (2)当a=1时,求f(x)在上的最大值和最小值; (3)当a=1时,求证:对大于1的任意正整数n,都有. |