1. 难度:中等 | |
下列给出的赋值语句中正确的是( ) A.3=A B.M=-M C.B=A=2 D.x+y=0 |
2. 难度:中等 | |
把89化成五进制数的末位数字为( ) A.1 B.2 C.3 D.4 |
3. 难度:中等 | |
如图,是某算法流程图的一部分,其算法的逻辑结构为( ) A.顺序结构 B.判断结构 C.条件结构 D.循环结构 |
4. 难度:中等 | |
某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是( ) A.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样法 C.系统抽样法,分层抽样法 D.简单随机抽样法,分层抽样法 |
5. 难度:中等 | |
下列对一组数据的分析,不正确的说法是( ) A.数据极差越小,样本数据分布越集中、稳定 B.数据平均数越小,样本数据分布越集中、稳定 C.数据标准差越小,样本数据分布越集中、稳定 D.数据方差越小,样本数据分布越集中、稳定 |
6. 难度:中等 | |
有五组变量: ①汽车的重量和汽车每消耗1升汽油所行驶的平均路程; ②平均日学习时间和平均学习成绩; ③某人每日吸烟量和其身体健康情况; ④正方形的边长和面积的倒数; ⑤汽车的重量和百公里耗油量; 其中两个变量成负相关的是( ) A.①③ B.③④ C.②⑤ D.④⑤ |
7. 难度:中等 | |||||||||||||||||||||||||||||||||||
计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:
A.6E B.72 C.5F D.B0 |
8. 难度:中等 | |
从一批产品中取出三件,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是( ) A.A与C互斥 B.B与C互斥 C.任两个均互斥 D.任两个均不互斥 |
9. 难度:中等 | |
从一箱产品中随机地抽取一件,设事件A=“抽到一等品”,事件B=“抽到二等品”,事件C=“抽到三等品”,且已知 P(A)=0.65,P(B)=0.2,P(C)=0.1.则事件“抽到的不是一等品”的概率为( ) A.0.65 B.0.35 C.0.3 D.0.005 |
10. 难度:中等 | |
先后抛掷骰子三次,则至少一次正面朝上的概率是( ) A. B. C. D. |
11. 难度:中等 | |
计算机的程序设计语言很多,但各种程序语言都包含下列基本的算法语句: , , , , . |
12. 难度:中等 | ||||||||||||||||
为了解某地高一年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高,单位:cm),分组情况如下:
|
13. 难度:中等 | |
如图,在正方形内有一扇形(见阴影部分),扇形对应的圆心是正方形的一顶点,半径为正方形的边长.在这个图形上随机撒一粒黄豆,它落在扇形外正方形内的概率为 . |
14. 难度:中等 | |
下列说法中正确的有 ①平均数不受少数几个极端值的影响,中位数受样本中的每一个数据影响; ②抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大 ③用样本的频率分布估计总体分布的过程中,样本容量越大,估计越准确. ④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是古典概型. |
15. 难度:中等 | |||||||||||||||
为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:
|
16. 难度:中等 | |
下面是计算应纳税所得额的算法过程,其算法步骤如下: 第一步,输入工资x (x<=5000), 第二步,如果x<=800,那么y=0;如果800<x<=1300,那么 y=0.05(x-800),否则 y=25+0.1(x-1300)第三步,输出税款y,结束. (1)请画出该算法程序框图 (2)写出该算法的程序. |
17. 难度:中等 | |
为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量,得如下所示的统计图,根据统计图: (1)甲、乙两个网站点击量的极差分别是多少? (2)甲网站点击量在[10,40]间的频率是多少? (3)甲、乙两个网站哪个更受欢迎?并说明理由. |
18. 难度:中等 | |
在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道: 摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱. (1)摸出的3个球为白球的概率是多少? (2)摸出的3个球为2个黄球1个白球的概率是多少? (3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱? |
19. 难度:中等 | |
假设大王家订了一份报纸,送报人可能在早上6点-8点之间把报纸送到他家,他每天离家外出的时间在早上6点-9点之间. (1)他离家前看不到报纸(称事件A)的概率是多少?(必须有过程、区域) (2)请你设计一种用产生随机数模拟的方法近似计算事件A的概率. |
20. 难度:中等 | |
给出50个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推.要求计算这50个数的和.先将下面给出的程序框图补充完整,再根据程序框图写出程序. (Ⅰ)把程序框图补充完整: (1)______ (2)______ (Ⅱ)程序: |