1. 难度:中等 | |
设x是实数,则“x>0”是“|x|>0”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 |
2. 难度:中等 | |
如果命题“p或q”与命题“非p”都是真命题,那么( ) A.命题p不一定是假命题 B.命题q不一定是真命题 C.命题q一定是真命题 D.命题p与命题q真假性相同 |
3. 难度:中等 | |
设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于( ) A.13 B.35 C.49 D.63 |
4. 难度:中等 | |
曲线y=x3-2x+4在点(1,3)处的切线的倾斜角为( ) A.30° B.45° C.60° D.120° |
5. 难度:中等 | |
抛物线y=4x2上的一点M到焦点的距离为1,则点M的纵坐标是( ) A. B. C. D.0 |
6. 难度:中等 | |
设变量x,y满足约束条件:.则目标函数z=2x+3y的最小值为( ) A.6 B.7 C.8 D.23 |
7. 难度:中等 | |
设双曲线以椭圆+=1长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( ) A.±2 B.± C.± D.± |
8. 难度:中等 | |
△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=( ) A. B. C. D. |
9. 难度:中等 | |
已知等差数列{an}中,a2=6,a5=15,若bn=a2n,则数列{bn}的前5项和等于( ) A.30 B.45 C.90 D.186 |
10. 难度:中等 | |
如果函数y=f(x)的图象如图,那么导函数y=f′(x)的图象可能是( ) A. B. C. D. |
11. 难度:中等 | |
若函数f(x)=在x=1处取极值,则a= . |
12. 难度:中等 | |
等比数列{an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,则{an}的公比为 . |
13. 难度:中等 | |
椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是,则这个椭圆方程为 . |
14. 难度:中等 | |
对任意实数a,b,c,给出下列命题: ①“a=b”是“ac=bc”的充要条件; ②“a+5是无理数”是“a是无理数”的充要条件; ③“a>b”是“a2>b2”的充分条件; ④“a<5”是“a<3”的必要条件. 其中真命题的题号是 . |
15. 难度:中等 | |
设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA (Ⅰ)求B的大小; (Ⅱ)若,c=5,求b. |
16. 难度:中等 | |
已知a<1,解关于x的不等式. |
17. 难度:中等 | |
设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值. (Ⅰ)求a、b的值; (Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围. |
18. 难度:中等 | |
已知实数列{an}是等比数列,其中a7=1,且a4,a5+1,a6成等差数列. (1)求数列{an}的通项公式; (2)数列{an}的前n项和记为Sn,证明:Sn<128(n=1,2,3…). |
19. 难度:中等 | |
点A、B分别是椭圆+=1长轴的左、右焦点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴上方,PA⊥PF. (1)求P点的坐标; (2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值. |
20. 难度:中等 | |
设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2(n∈N*). (1)设bn=an+1-2an,证明数列{bn}是等比数列; (2)求数列{an}的通项公式. |