1. 难度:中等 | |
已知全集U=R,集合A={x|x+1<0},B={x|x-3<0},那么集合(CUA)∩B=( ) A.{x|-1≤x<3} B.{x|-1<x<3} C.{x|x<-1} D.{x|x>3} |
2. 难度:中等 | |
已知点A(-1,1),点B(2,y),向量=(1,2),若,则实数y的值为( ) A.5 B.6 C.7 D.8 |
3. 难度:中等 | |
已知△ABC中,,B=45°,则角A等于( ) A.150° B.90° C.60° D.30° |
4. 难度:中等 | |
在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A.ρ=cosθ B.ρ=sinθ C.ρcosθ=1 D.ρsinθ=1 |
5. 难度:中等 | |
阅读程序框图,如果输出的函数值在区间内,则输入的实数x的取值范围是( ) A.(-∞,-2] B.[-2,-1] C.[-1,2] D.[2,+∞) |
6. 难度:中等 | |
设等比数列{an}的前n项和为Sn,若8a2+a5=0,则下列式子中数值不能确定的是( ) A. B. C. D. |
7. 难度:中等 | |
如图,四边形ABCD中,AB=AD=CD=1,,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A'-BCD,使平面A'BD⊥平面BCD,则下列结论正确的是( ) A.A'C⊥BD B.∠BA'C=90° C.△A'DC是正三角形 D.四面体A'-BCD的体积为 |
8. 难度:中等 | |
对于函数①,②,③f(x)=cos(x+2)-cosx, 判断如下两个命题的真假: 命题甲:f(x)在区间(1,2)上是增函数; 命题乙:f(x)在区间(0,+∞)上恰有两个零点x1,x2,且x1x2<1. 能使命题甲、乙均为真的函数的序号是( ) A.① B.② C.①③ D.①② |
9. 难度:中等 | |
i为虚数单位,则= . |
10. 难度:中等 | |
在(2+x)5的展开式中,x2的系数为 . |
11. 难度:中等 | |
若实数x,y满足条件则2x+y的最大值为 . |
12. 难度:中等 | |
(选做题)(几何证明选讲)如图所示,过圆C外一点P做一条直线与圆C交于A,B两点,BA=2AP,PT与圆C相切于T点. 已知圆C的半径为2,∠CAB=30°,则PT= . |
13. 难度:中等 | |
双曲线C:x2-y2=1的渐近线方程为 ;若双曲线C的右顶点为A,过A的直线l与双曲线C的两条渐近线交于P,Q两点,且,则直线l的斜率为 . |
14. 难度:中等 | |
在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.则坐标原点O与直线上一点的“折线距离”的最小值是 ;圆x2+y2=1上一点与直线上一点的“折线距离”的最小值是 . |
15. 难度:中等 | |
已知函数. (Ⅰ)若点在角α的终边上,求f(α)的值; (Ⅱ)若,求f(x)的值域. |
16. 难度:中等 | |
如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1的中点. (Ⅰ)求证:A1D⊥平面BB1C1C; (Ⅱ)求证:AB1∥平面A1DC; (Ⅲ)求二面角D-A1C-A的余弦值. |
17. 难度:中等 | |
一个袋中装有6个形状大小完全相同的小球,球的编号分别为1,2,3,4,5,6. (Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率; (Ⅱ)若从袋中每次随机抽取2个球,有放回的抽取3次,求恰有2次抽到6号球的概率; (Ⅲ)若一次从袋中随机抽取3个球,记球的最大编号为X,求随机变量X的分布列. |
18. 难度:中等 | |
已知椭圆(a>b>0)的右焦点为F2(3,0),离心率为e. (Ⅰ)若,求椭圆的方程; (Ⅱ)设直线y=kx与椭圆相交于A,B两点,M,N分别为线段AF2,BF2的中点.若坐标原点O在以MN为直径的圆上,且,求k的取值范围. |
19. 难度:中等 | |
已知函数. (Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值; (Ⅱ)求f(x)的单调区间; (Ⅲ)设g(x)=x2-2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围. |
20. 难度:中等 | |
已知数列{an},{bn}满足bn=an+1-an,其中n=1,2,3,…. (Ⅰ)若a1=1,bn=n,求数列{an}的通项公式; (Ⅱ)若bn+1bn-1=bn(n≥2),且b1=1,b2=2. (ⅰ)记cn=a6n-1(n≥1),求证:数列{cn}为等差数列; (ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次.求a1应满足的条件. |