1. 难度:中等 | |
方程x2•sinA+2x•sinB+sinC=0有两等根,则△ABC的三边a,b,c满足关系式( ) A.b=ac B.a=b=c C.c=ab D.b2=ac |
2. 难度:中等 | |
已知,,,若,则=( ) A.(1,) B. C. D. |
3. 难度:中等 | |
不等式ax2+5x-2>0的解集是,则不等式ax2-5x+a2-1>0的解集是( ) A. B. C.{x|x<-3,或 D.{x|x<-2,或 |
4. 难度:中等 | |
下列不等式中不一定成立的是( ) A.x,y>0时,≥2 B.≥2 C.≥2 D.a>0时,≥4 |
5. 难度:中等 | |
设sinα=-,cosα=,那么下列的点在角α的终边上的是( ) A.(-3,4) B.(-4,3) C.(4,-3) D.(3,4) |
6. 难度:中等 | |
下列命题中的真命题是( ) A. B.若,则或 C. D.若,则 |
7. 难度:中等 | |
若向量与不共线,≠0,且,则向量与的夹角为( ) A.0 B. C. D. |
8. 难度:中等 | |
(中应用举例)已知偶函数f(x)满足:f(x)=f(x+2),且当x∈[0,1]时,f(x)=sinx,其图象与直线在y轴右侧的交点按横坐标从小到大依次记为P1,P2…,则等于( ) A.2 B.4 C.8 D.16 |
9. 难度:中等 | |
已知,||=2,||=3,且3+2与λ-垂直,则实数λ的值为( ) A. B.1 C. D. |
10. 难度:中等 | |
函数f(x)=Asin(ωx+θ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+…+f(2011)的值为( ) A.0 B.2 C.2+ D.2+2 |
11. 难度:中等 | |
关于x的方程sin2x+2cosx+a=0有解,则a的取值范围是 . |
12. 难度:中等 | |
函数的一段图象过点(0,1),如图所示,函数f(x)的解析式 . |
13. 难度:中等 | |
若=(2,3),=(-4,7),则在方向上的投影为 . |
14. 难度:中等 | |
已知,则的值是 . |
15. 难度:中等 | |
已知关于x的方程sinx+cosx=a与tanx+cotx=a的解集都是空集,则实数a的取值范围是 . |
16. 难度:中等 | |
求值:. |
17. 难度:中等 | |
设向量,,函数,求f(x)的最大值、最小正周期和单调区间. |
18. 难度:中等 | |
在△ABC中,已知A(2,-1),B(3,3),C(-3,1),BC的中点为M,求的坐标和cos∠BAM的值. |
19. 难度:中等 | |
已知向量,,其中ω>0,设函数f(x)=2,已知f(x)的最小正周期为π. (1)求f(x)的解析式; (2)设g(x)=log2f(x),求g(x)的定义域和单调递增区间. (3)证明:直线x=是g(x)图象的一条对称轴. |
20. 难度:中等 | |
我缉私巡逻艇在一小岛南50°西的方向,距小岛A12海里的B处,发现隐藏在小岛边上的一走私船正开始向岛北10°西方向行驶,测得其速度为每小时10海里,问我巡逻艇须用多大的速度朝什么方向航行才能恰在两小时后截获该走私船?(必要时,可参考下列数据sin38°≈0.62) |
21. 难度:中等 | |
设向量,,,角α∈(0,π),β∈(π,2π),若,,且,求tan(α-β)的值. |