1. 难度:中等 | |
已知a∈R,函数,g(x)=(lnx-1)ex+x(其中e为自然对数的底数). (1)求函数f(x)在区间(0,e]上的最小值; (2)是否存在实数x∈(0,e],使曲线y=g(x)在点x=x处的切线与y轴垂直?若存在,求出x的值;若不存在,请说明理由. |
2. 难度:中等 | |
已知线段,CD的中点为O,动点A满足AC+AD=2a(a为正常数). (1)建立适当的直角坐标系,求动点A所在的曲线方程; (2)若a=2,动点B满足BC+BD=4,且OA⊥OB,试求△AOB面积的最大值和最小值. |
3. 难度:中等 | |
函数的反函数为f-1(x),数列{an}和{bn}满足:,an+1=f-1(an),函数y=f-1(x)的图象在点(n,f-1(n))(n∈N*)处的切线在y轴上的截距为bn. (1)求数列{an}的通项公式; (2)若数列;的项中仅最小,求λ的取值范围; (3)令函数,0<x<1.数列{xn}满足:,0<xn<1且xn+1=g(xn),(其中n∈N*).证明:. |
4. 难度:中等 | |
已知f(x)=ax-lnx,x∈(0,e)其中e是自然常数,a∈R. (1)讨论a=1时,f(x)的单调性、极值; (2)是否存在实数a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由. |
5. 难度:中等 | |
设A(x1,y1),B(x2,y2)是椭圆上的两点,已知向量=(,),=(,),若=0且椭圆的离心率e=,短轴长为2,O为坐标原点. (Ⅰ)求椭圆的方程; (Ⅱ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. |
6. 难度:中等 | |
已知数列{an}的前n项和Sn满足:Sn=a(Sn-an+1)(a为常数,a≠0,a≠1). (Ⅰ)求{an}的通项公式; (Ⅱ)设bn=an2+Sn•an,若数列{bn}为等比数列,求a的值; (Ⅲ)在满足条件(Ⅱ)的情形下,,数列{cn}的前n项和为Tn.求证:Tn>2n-. |
7. 难度:中等 | |
已知函数f(x)的导数f′(x)=3x2-3ax,f(0)=b.a,b为实数,1<a<2. (Ⅰ)若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值; (Ⅱ)在(Ⅰ)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程; (Ⅲ)设函数F(x)=(f′(x)+6x+1)•e2x,试判断函数F(x)的极值点个数. |
8. 难度:中等 | |
如图,设F是椭圆:(a>b>0)的左焦点,直线l为其左准线,直线l与x轴交于点P,线段MN为椭圆的长轴,已知|MN|=8,且|PM|=2|MF|. (1)求椭圆C的标准方程; (2)若过点P的直线与椭圆相交于不同两点A,B,求证:∠AFM=∠BFN; (3)(理)求三角形ABF面积的最大值. |
9. 难度:中等 | |
古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有n(n∈N*)个圆盘依其半径大小,大的在下,小的在上套在A柱上,现要将套在A柱上的盘换到C柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子A、B、C可供使用.现用an表示将n个圆盘全部从A柱上移到C柱上所至少需要移动的次数,回答下列问题: (1)写出a1,a2,a3,并求出an; (2)记bn=an+1,求和(i,j∈N*);(其中表示所有的积bibj(1≤i≤j≤n)的和) 证明:≤++…+<(n∈N*). |
10. 难度:中等 | |
已知函数f(x)= (1)当时,求f(x)的最大值; (2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由. |
11. 难度:中等 | |
在平面直角坐标系xOy中,线段AB与y轴交于点F(0,),直线AB的斜率为k,且满足|AF|•|BF|=1+k2. (1)证明:对任意的实数k,一定存在以y轴为对称轴且经过A、B、O三点的抛物线C,并求出抛物线C的方程; (2)对(1)中的抛物线C,若直线l:y=x+m(m>0)与其交于M、N两点,求∠MON的取值范围. |
12. 难度:中等 | |
设数列{an}的前n项和为Sn,已知Sn=2an-2n+1 (n∈N*). (Ⅰ)求数列{an}的通项公式; (Ⅱ)设bn=,数列{bn}的前n项和为Bn,若存在整数m,使对任意n∈N*且n≥2,都有B3n-Bn>成立,求m的最大值; (Ⅲ)令cn=(-1)n+1,数列{cn}的前n项和为Tn,求证:当n∈N*且n≥2时,T2n<. |
13. 难度:中等 | |
各项都为正数的数列{an},满足a1=1,an+12-an2=2. (Ⅰ)求数列{an}的通项公式; (Ⅱ)证明++…+≤对一切n∈N+恒成立. |
14. 难度:中等 | |
已知动圆M经过点G(0,-1),且与圆Q:x2+(y-1)2=8内切. (Ⅰ)求动圆M的圆心的轨迹E的方程. (Ⅱ)以为方向向量的直线l交曲线E于不同的两点A、B,在曲线E上是否存在点P使四边形OAPB为平行四边形(O为坐标原点).若存在,求出所有的P点的坐标与直线l的方程;若不存在,请说明理由. |
15. 难度:中等 | |
已知函数f(x)=lnx-mx+m,m∈R. (Ⅰ)求函数f(x)的单调区间. (Ⅱ)若f(x)≤0在x∈(0,+∞)上恒成立,求实数m的取值范围. (Ⅲ)在(Ⅱ)的条件下,任意的0<a<b,. |
16. 难度:中等 | |
A﹑B﹑C是直线l上的三点,向量﹑﹑满足:-[y+2f'(1)]•+ln(x+1)•=; (Ⅰ)求函数y=f(x)的表达式; (Ⅱ)若x>0,证明f(x)>; (Ⅲ)当时,x∈[-1,1]及b∈[-1,1]都恒成立,求实数m的取值范围. |
17. 难度:中等 | |
,已知y=f(x)是定义在R上的单调递减函数,对任意的实数x,y都有f(x+y)=f(x)f(y)且f(0)=1,数列{an}满足a1=4,(n∈N*). (1)求数列{an}的通项公式; (2)设Sn是数列{an}的前n项和,试比较Sn与6n2-2的大小. |
18. 难度:中等 | |
已知抛物线C1:y2=4x的焦点与椭圆C2:的右焦点F2重合,F1是椭圆的左焦点. (1)在△ABC中,若A(-4,0),B(0,-3),点C在抛物线y2=4x上运动,求△ABC重心G的轨迹方程; (2)若P是抛物线C1与椭圆C2的一个公共点,且∠PF1F2=α,∠PF2F1=β,求cosα•cosβ的值及△PF1F2的面积. |