1. 难度:中等 | |
复数=( ) A.i B.-i C. D. |
2. 难度:中等 | |
设集合M={1,2},N={a2},则“a=1”是“N⊆M”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 |
3. 难度:中等 | |
设如图是某几何体的三视图,则该几何体的体积为( ) A.9π+42 B.36π+18 C. D. |
4. 难度:中等 | |
已知等比数列{an}中,,公比,则a6=( ) A. B. C. D. |
5. 难度:中等 | |
设变量x,y满足,则x+2y的最大值和最小值分别为( ) A.1,-1 B.2,-2 C.1,-2 D.2,-1 |
6. 难度:中等 | |
如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于( ) A. B. C. D. |
7. 难度:中等 | |
若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于( ) A.2 B.3 C.6 D.9 |
8. 难度:中等 | |
在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k丨n∈Z},k=0,1,2,3,4.给出如下四个结论: ①2011∈[1]; ②-3∈[3]; ③Z=[0]∪[1]∪[2]∪[3]∪[4]; ④“整数a,b属于同一“类”的充要条件是“a-b∈[0]”. 其中,正确结论的个数是( ) A.1 B.2 C.3 D.4 |
9. 难度:中等 | |
为了调制一种饮料,在每10kg半成品饮料中加入柠檬汁进行试验,加入量为500g到1500g之间,现用0.618法选取试点找到最优加入量,则第二个试点应选取在 g. |
10. 难度:中等 | |
曲线的两个交点的距离是 . |
11. 难度:中等 | |
随机抽取某产品m件,测得其长度分别为k(k∈R),则如图所示的程序框图输出的S= ,s表示的样本的数字特征是 .(注:框图中的赋值符号“=”也可以写成“←”“:=”) |
12. 难度:中等 | |
设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2-x.则f(1)= . |
13. 难度:中等 | |
已知向量,满足(+2)•(-)=-6,||=1,||=2,则与的夹角为 . |
14. 难度:中等 | |
设双曲线(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率等于 . |
15. 难度:中等 | |
过原点的直线与圆x2+y2-2x-4y+4=0相交所得的弦长为2,则该直线的方程为 . |
16. 难度:中等 | |
已知函数f(x)=logax+x-b(a>0,且a≠1).当2<a<3<b<4时,函数f(x)的零点x∈(n,n+1),n∈N*,则n= . |
17. 难度:中等 | |
设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC= (I) 求△ABC的周长; (II)求cos(A-C)的值. |
18. 难度:中等 | |||||||||||||
在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率. |
19. 难度:中等 | |
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB. (I)求证:CE⊥平面PAD; (Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积. |
20. 难度:中等 | |||||||||||||||||
等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.
(Ⅱ)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前2n项和S2n. |
21. 难度:中等 | |
已知椭圆的离心率为,右焦点为(,0),斜率为I的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2). (I)求椭圆G的方程; (Ⅱ)求△PAB的面积. |
22. 难度:中等 | |
某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元. (Ⅰ)写出y关于r的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r. |