1. 难度:中等 | |
5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有( ) A.A33 B.4A33 C.A55-A32A33 D.A22A33+A21A31A33 |
2. 难度:中等 | |
把把二项式定理展开,展开式的第8项的系数是( ) A.135 B.-135 C. D. |
3. 难度:中等 | |
在的展开式中,x2的系数是224,则的系数是( ) A.14 B.28 C.56 D.112 |
4. 难度:中等 | |
位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是.质点P移动5次后位于点(2,3)的概率为( ) A. B. C. D. |
5. 难度:中等 | |
若某空间几何体的三视图如图所示,则该几何体的体积是( ) A. B. C.1 D.2 |
6. 难度:中等 | |
如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A.96 B.84 C.60 D.48 |
7. 难度:中等 | |
在相关分析中,对相关系数r,下列说法正确的是( ) A.r越大,线性相关程度越强 B.|r|越小,线性相关程度越强 C.|r|越大,线性相关程度越弱,|r|越小,线性相关程度越强 D.|r|≤1且|r|越接近1,线性相关程度越强,|r|越接近0,线性相关程度越弱 |
8. 难度:中等 | |
在独立性检验中,统计量Χ2有两个临界值:3.841和6.635.当Χ2>3.841时,有95%的把握说明两个事件有关,当Χ2>6.635时,有99%的把握说明两个事件有关,当Χ2≤3.841时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算Χ2=20.87.根据这一数据分析,认为打鼾与患心脏病之间( ) A.有95%的把握认为两者有关 B.约有95%的打鼾者患心脏病 C.有99%的把握认为两者有关 D.约有99%的打鼾者患心脏病 |
9. 难度:中等 | |
已知服从正态分布N(μ,σ2)的随机变量,在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.3%,95.4%和99.7%.某大型国有企业为10000名员工定制工作服,设员工的身高(单位:cm)服从正态分布N(173,52),则适合身高在163~183cm范围内员工穿的服装大约要定制( ) A.6830套 B.9540套 C.9520套 D.9970套 |
10. 难度:中等 | |
||=1,||=,•=0,点C在∠AOB内,且∠AOC=30°,设=m+n(m、n∈R),则等于( ) A. B.3 C. D. |
11. 难度:中等 | |
在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x4的项的系数是( ) A.-15 B.85 C.-120 D.274 |
12. 难度:中等 | |
水平桌面α上放有4个半径均为2R的球,且相邻的球都相切(球心的连线构成正方形).在这4个球的上面放1个半径为R的小球,它和下面4个球恰好都相切,则小球的球心到水平桌面α的距离是( ) A.2R B.3R C. D. |
13. 难度:中等 | |
若随机变量X服从两点分布,且成功概率为0.7;随机变量Y服从二项分布,且Y~B(10,0.8),则E(X),D(X),E(Y),D(Y)分别是 , , , . |
14. 难度:中等 | |
对有n(n≥4)个元素的总体{1,2,…,n}进行抽样,先将总体分成两个子总体{1,2,…,m}和{m+1,m+2,…,n}(m是给定的正整数,且2≤m≤n-2),再从每个子总体中各随机抽取2个元素组成样本.用Pij表示元素i和j同时出现在样本中的概率,则P1n= ; 所有Pij(1≤i<j≤n)的和等于 . |
15. 难度:中等 | |
某人有资金10万元,准备用于投资经营甲、乙两种商品,据资料统计,经营甲商品获利2万元的概率为0.4,获利3万元的概率为0.3,亏损1万元的概率为0.3;经营乙商品获利2万元的概率为0.6,获利4万元的概率为0.2,亏损2万元的概率为0.2,则投资者应经营 商品• |
16. 难度:中等 | |
一块各面均有油漆的正方体被锯成1000个同样大小的正方体,若将这些小正方体均匀搅混在一起,则任意取出的一小正方体其两面均涂有油漆的概率是 . |
17. 难度:中等 | |
已知:在△ABC中,AD为∠BAC的平分线,AD的垂直平分线EF与AD交于点E,与BC的延长线交于点F,若CF=4,BC=5,则DF= . |
18. 难度:中等 | |
已知:向量=(sinθ,1),向量,-<θ<, (1)若,求:θ的值; (2)求:的最大值. |
19. 难度:中等 | |
如图,在△ABC中,∠C=90°,AC=8,BC=6.P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足为M、N.设AP=x. (1)在△ABC中,AB=______; (2)当x=______时,矩形PMCN的周长是14; (3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明. |
20. 难度:中等 | |
某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一量某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9.求在一年内李明参加驾照考试次数ξ的分布列和ξ的期望,并求李明在一所内领到驾照的概率. |
21. 难度:中等 | |
如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BBl∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒. (1)当t为何值时,AD=AB,并求出此时DE的长度; (2)当△DEG与△ACB相似时,求t的值; (3)以DH所在直线为对称轴,线段AC经轴对称变换后的图形为A′C′. ①当t>时,连接C′C,设四边形ACC′A′的面积为S,求S关于t的函数关系式; ②当线段A′C′与射线BB,有公共点时,求t的取值范围(写出答案即可). |
22. 难度:中等 | |
某车站每天8:00~9:00,9:00~10:00都恰有一辆客车到站,8:00~9:00到站的客车A可能在8:10,8:30,8:50到站,其概率依次为;9:00~10:00到站的客车B可能在9:10,9:30,9:50到站,其概率依次为. (1)旅客甲8:00到站,设他的候车时间为ξ,求ξ的分布列和Eξ; (2)旅客乙8:20到站,设他的候车时间为η,求η的分布列和Eη. |
23. 难度:中等 | |
某先生居住在城镇的A处,准备开车到单位B处上班,若该地各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率,如图.( 例如:A→C→D算作两个路段:路段AC发生堵车事件的概率为,路段CD发生堵车事件的概率为). (1)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率最小; (2)若记ξ路线A→(3)C→(4)F→(5)B中遇到堵车次数为随机变量ξ,求ξ的数学期望Eξ. |