1. 难度:中等 | |
复数z=-2+i,则复数z在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
2. 难度:中等 | |
函数y=sinx的图象上一点处的切线的斜率为( ) A.1 B. C. D. |
3. 难度:中等 | |
由直线x=1,x=2,曲线y=x2及x轴所围图形的面积为( ) A.3 B.7 C. D. |
4. 难度:中等 | |
物体运动方程为,则t=2时瞬时速度为( ) A.2 B.4 C.6 D.8 |
5. 难度:中等 | |
复数z=1+i的共轭复数=( ) A.1+i B.1-i C. D. |
6. 难度:中等 | |
已知函数f(x)的导函数f′(x)的图象如图所示,那么函数f(x)的图象最有可能的是( ) A. B. C. D. |
7. 难度:中等 | |
若,则f'(x)等于( ) A.2 B.-2 C. D. |
8. 难度:中等 | |
如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色.现有4种颜色可供选择,则不同的着色方法共有_____________种.( ) A.60 B.72 C.120 D.24 |
9. 难度:中等 | |
有一段“三段论”推理是这样的:对于可导函数f(x),如果f'(x)=0,那么x=x是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f'(0)=0,所以,x=0是函数f(x)=x3的极值点.以上推理中( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.结论正确 |
10. 难度:中等 | |
某天上午要排语文、数学、体育、计算机四节课,其中体育不排在第一节,那么这天上午课程表的不同排法共有( ) A.6种 B.9种 C.18种 D.24种 |
11. 难度:中等 | |
函数( ) A.在(0,2)上单调递减 B.在(-∞,0)和(2,+∞)上单调递增 C.在(0,2)上单调递增 D.在(-∞,0)和(2,+∞)上单调递减 |
12. 难度:中等 | |
平面上有n个圆,其中每两个都相交于两点,每三个都无公共点,它们将平面分成f(n)块区域,有f(1)=2,f(2)=4,f(3)=8,则f(n)的表达式为( ) A.2n B.2n C.n2-n+2 D.2n-(n-1)(n-2)(n-3) |
13. 难度:中等 | |
若,则实数k的值为 . |
14. 难度:中等 | |
若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V= . |
15. 难度:中等 | |
观察以下不等式 可归纳出对大于1的正整数n成立的一个不等式,则不等式右端f(n)的表达式应为 . |
16. 难度:中等 | |
下列是关于复数的类比推理: ①复数的加减法运算可以类比多项式的加减法运算法则; ②由实数绝对值的性质|x|2=x2类比得到复数z的性质|z|2=z2; ③已知a,b∈R,若a-b>0,则a>b.类比得已知z1,z2∈C,若z1-z2>0,则z1>z2; ④由向量加法的几何意义可以类比得到复数加法的几何意义. 其中推理结论正确的是 . |
17. 难度:中等 | |
已知函数f(x)=x3-3x. (1)求函数f(x)在[-3,]上的最大值和最小值; (2)过点P(2,-6)作曲线y=f(x)的切线,求此切线的方程. |
18. 难度:中等 | |
设函数f(x)=x2ex-1+ax3+bx2,已知x=-2和x=1为f(x)的极值点. (1)求a和b的值; (2)讨论f(x)的单调性. |
19. 难度:中等 | |
甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (Ⅰ)若甲没有通过测试,求甲选择试题有多少种? (Ⅱ)求甲、乙两人考试均合格的概率. |
20. 难度:中等 | |
已知两个数列{Sn}、{Tn}分别: 当n∈N*,Sn=1-,Tn=. (1)求S1,S2,T1,T2; (2)猜想Sn与Tn的关系,并用数学归纳法证明. |
21. 难度:中等 | |
如图,在直线y=0和y=a(a>0)之间表示的是一条河流,河流的一侧河岸(x轴)是一条公路,且公路随时随处都有公交车来往.家住A(0,a)的某学生在位于公路上B(d,0)(d>0)处的学校就读.每天早晨该学生都要从家出发,可以先乘船渡河到达公路上某一点,再乘公交车去学校,或者直接乘船渡河到达公路上B(d,0)处的学校.已知船速为υ(υ>0),车速为2υ(水流速度忽略不计). (Ⅰ)若d=2a,求该学生早晨上学时,从家出发到达学校所用的最短时间; (Ⅱ)若,求该学生早晨上学时,从家出发到达学校所用的最短时间. |
22. 难度:中等 | |
设函数. (I)证明:0<a<1是函数f(x)在区间(1,2)上递增的充分而不必要的条件; (II)若x∈(-∞,0)时,满足f(x)<2a2-6恒成立,求实数a的取值范围. |