1. 难度:中等 | |
已知集合M={m|m=in,n∈N},其中i2=-1,则下面属于M的元素是( ) A.(1-i)+(1+i) B.(1-i)(1+i) C. D.(1-i)2 |
2. 难度:中等 | |
已知cos(-φ)=,且|φ|<,则tanφ等于( ) A.- B. C. D.- |
3. 难度:中等 | |
已知函数f(x)=,若f[f(0)]=4a,则实数a等于( ) A. B. C.2 D.9 |
4. 难度:中等 | |
在的棱长为1的正四面体ABCD中,E是BC的中点,则=( ) A.0 B. C.- D.- |
5. 难度:中等 | |
已知曲线C:y=2x2,点A(0,-2)及点B(3,a),从点A观察点B,要使视线不被曲线C挡住,则实数a的取值范围是( ) A.(4,+∞) B.(-∞,4) C.(10,+∞) D.(-∞,10) |
6. 难度:中等 | |
设曲线y=在点(,2)处的切线与直线x+ay+1=0垂直,则a=( ) A.2 B.1 C.-1 D.-2 |
7. 难度:中等 | |
已知p:存在x∈R,使mx2+1≤0;q:对任意x∈R,恒有x2+mx+1>0.若p或q为假命题,则实数m的取值范围为( ) A.m≥2 B.m≤-2 C.m≤-2,或m≥2 D.-2≤m≤2 |
8. 难度:中等 | |
设O为坐标原点,点A(1,1),若点,则取得最小值时,点B的个数是( ) A.1 B.2 C.3 D.无数个 |
9. 难度:中等 | |
已知三棱锥S-ABC中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为( ) A. B. C. D. |
10. 难度:中等 | |
已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am,an使得=4a1,则的最小值为( ) A. B. C. D.不存在 |
11. 难度:中等 | |
由0到9这十个数字所组成的没有重复数字的五位数中,满足千位、百位、十位上的数字成递增等差数列的五位数共有( ) A.720个 B.684个 C.648个 D.744个 |
12. 难度:中等 | |
设,若f(x)=x+a有且仅有三个解,则实数a的取值范围是( ) A.(-∞,1) B.(-∞,1] C.(-∞,2] D.(-∞,2) |
13. 难度:中等 | |
不等式log2的解集为 . |
14. 难度:中等 | |
已知二次函数y=f(x)的图象为开口向下的抛物线,且对任意x∈R都有f(1-x)=f(1+x).若向量,,则满足不等式的m的取值范围为 . |
15. 难度:中等 | |
过双曲线的一个焦点作一条渐近线的垂线,垂足恰好落在曲线上,则双曲线的离心率为 . |
16. 难度:中等 | |
若{an}是等差数列,m,n,p是互不相等的正整数,有正确的结论:(m-n)ap+(n-p)am+(p-m)an=0,类比上述性质,相应地,若等比数列{bn},m,n,p是互不相等的正整数,有 . |
17. 难度:中等 | |
在△ABC中,a、b、c分别为角A、B、C的对边,且C=,a+b=λc,(其中λ>1). (Ⅰ)若c=λ=2时,求•的值; (Ⅱ)若•=(λ4+3)时,求边长c的最小值及判定此时△ABC的形状. |
18. 难度:中等 | |
某大学对参加了“世博会”的该校志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分.假设该校志愿者甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等次相互独立. (Ⅰ)求在这次考核中,志愿者甲、乙、两三人中至少有一名考核为优秀的概率; (Ⅱ)记这这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ. |
19. 难度:中等 | |
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点. (Ⅰ)证明:AE⊥PD; (Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E-AF-C的余弦值. |
20. 难度:中等 | |
已知数列{an},{bn}满足a1=2,2an=1+anan+1,bn=an-1,数列{bn}的前n项和 为Sn,Tn=S2n-Sn. (Ⅰ)求证数列{}是等差数列,并求数列{bn}的通项公式; (Ⅱ)求证:Tn+1>Tn. |
21. 难度:中等 | |
设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:y=x2-1与y轴的交点为B,且经过F1,F2点. (Ⅰ)求椭圆C1的方程; (Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求△MPQ面积的最大值. |
22. 难度:中等 | |
已知A、B、C是直线l上的三点,O是直线l外一点,向量满足=[f(x)+2f′(1)]-ln(x+1). (Ⅰ)求函数y=f(x)的表达式; (Ⅱ)若x>0,证明:f(x)>; (Ⅲ)若不等式x2≤f(x2)+m2-2m-3对x∈[-1,1]恒成立,求实数m的取值范围. |