1. 难度:中等 | |
i是虚数单位,复数=( ) A.1-i B.1+i C.-1+i D.i |
2. 难度:中等 | |
已知集合,集合N={x|x2+x-2<0},则M∩N=( ) A.{x|x≥-1} B.{x|x<1} C.{x|-1<x<1} D.{x|-1≤x<1} |
3. 难度:中等 | |
已知等差数列{an}满足a2+a8=16,则a5等于( ) A.10 B.8 C.6 D.4 |
4. 难度:中等 | |
下列命题的说法错误的是( ) A.命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0” B.“x=1”是“x2-3x+2=0”的充分不必要条件 C.若p∧q为假命题,则p、q均为假命题 D.对于命题p:∀x∈R均有x2+x+1>0.则¬p:∃x∈R,使得x2+x+1≤0 |
5. 难度:中等 | |
已知某个几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的侧面积是( ) A. B. C. D. |
6. 难度:中等 | |
函数的一个零点落在下列哪个区间( ) A.(0,1) B.(1,2) C.(2,3) D.(3,4) |
7. 难度:中等 | |
已知函数f(x)的导函数的图象如图所示,给出下列四个结论: ①函数f(x)在区间(-3,1)内单调递减; ②函数f(x)在区间(1,7)内单调递减; ③当x=-3时,函数f(x)有极大值; ④当x=7时,函数f(x)有极小值. 则其中正确的是( ) A.②④ B.①④ C.①③ D.②③ |
8. 难度:中等 | |
已知变量x、y满足,则x2+y2的取值范围为( ) A.[13,40] B.(-∞,13]∪[40,+∞) C. D. |
9. 难度:中等 | |
以抛物线的焦点为圆心,3为半径的圆与直线4x+3y+2=0相交所得的弦长为( ) A. B. C. D.8 |
10. 难度:中等 | |
已知直线l⊥平面α,直线m⊂平面β,有下面四个命题,其中正确命题是 ①α∥β⇒l⊥m ②α⊥β⇒l∥m ③l∥m⇒α⊥β ④l⊥m⇒α∥β A.①与② B.①与③ C.②与④ D.③与④ |
11. 难度:中等 | |
定义行列式运算=a1a4-a2a3.将函数的图象向左平移个单位,以下是所得函数图象的一个对称中心是( ) A. B. C. D. |
12. 难度:中等 | |
现有四个函数:①y=x•sinx②y=x•cosx③y=x•|cosx|④x•2x的图象(部分)如下,则按照从左到右图象对应的函数序号安排正确的一组是( ) A.①④③② B.④①②③ C.①④②③ D.③④②① |
13. 难度:中等 | |
已知向量,则实数m的值为 . |
14. 难度:中等 | |
在△ABC中,三边a、b、c所对的角分别为A、B、C,,则边c= . |
15. 难度:中等 | |
中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方程为 . |
16. 难度:中等 | |
如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.介于1到200之间的所有“神秘数”之和为 . |
17. 难度:中等 | |
已知函数. (Ⅰ)求函数f(x)的最小正周期和单调递增区间; (Ⅱ)当时,求函数y=f(x)的值域. |
18. 难度:中等 | |
已知数列{an}的前n项和是Sn,且2Sn=2-an. (Ⅰ)求数列{an}的通项公式; (Ⅱ) 记bn=an+n,求数列{bn}的前n项和Tn. |
19. 难度:中等 | |
如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1. (Ⅰ)求证:AB∥平面PCD; (Ⅱ)求证:BC⊥平面PAC; (Ⅲ)若M是PC的中点,求三棱锥M-ACD的体积. |
20. 难度:中等 | |
某县畜牧水产局连续6年对该县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图. 甲图调查表明:每个鱼池平均产量直线上升,从第1年1万只鳗鱼上升到第6年2万只. 乙图调查表明:全县鱼池总个数直线下降,由第1年30个减少到第6年10个. 请你根据提供的信息说明: (Ⅰ)第5年全县鱼池的个数及全县出产的鳗鱼总数; (Ⅱ)哪一年的规模(即总产量)最大?说明理由. |
21. 难度:中等 | |
已知椭圆C: (a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),离心率为. (Ⅰ)求椭圆C的方程; (Ⅱ)已知一直线l过椭圆C的右焦点F2,交椭圆于点A、B. (ⅰ)若满足(O为坐标原点),求△AOB的面积; (ⅱ)当直线l与两坐标轴都不垂直时,在x轴上是否总存在一点P,使得直线PA、PB的倾斜角互为补角?若存在,求出P坐标;若不存在,请说明理由. |
22. 难度:中等 | |
已知函数f(x)=px--2lnx、 (Ⅰ)若p=3,求曲f9想)在点(1,f(1))处的切线方程; (Ⅱ)若p>0且函f(x)在其定义域内为增函数,求实数p的取值范围; (Ⅲ)若函数y=f(x)在x∈(0,3)存在极值,求实数p的取值范围. |