1. 难度:中等 | |
下列叙述错误的是( ) A.若事件A发生的概率为P(A),则0≤P(A)≤1 B.互斥事件不一定是对立事件,但是对立事件一定是互斥事件 C.5张奖券中有一张有奖,甲先抽,乙后抽,则乙与甲抽到有奖奖券的可能性相同 D.某事件发生的概率是随着试验次数的变化而变化的 |
2. 难度:中等 | |
命题“若x2<1,则-1<x<1”的逆否命题是( ) A.若x2≥1,则x≥1或x≤-1 B.若-1<x<1,则x2<1 C.若x>1或x<-1,则x2>1 D.若x≥1或x≤-1,则x2≥1 |
3. 难度:中等 | |
从一批羽毛球产品中任取一个,质量小于4.8 g的概率是0.3,质量不小于4.85 g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率是( ) A.0.62 B.0.38 C.0.7 D.0.68 |
4. 难度:中等 | ||||||||||
某地共有10万户居民,从中随机调查了1000户,拥有彩电的调查结果如下表:
A.0.123万户 B.1.385万户 C.1.8万户 D.1.2万户 |
5. 难度:中等 | |
某人5次上班途中所花的时间(单位:分钟)分别为8,12,10,11,9.若这组数据的平均数为x,方差为y,则|x-y|的值为( ) A.0 B.2 C.4 D.8 |
6. 难度:中等 | |
如图是歌手大奖赛中,七位评委为甲,乙两名选手打出的分数的茎叶图(其中m为数字0-9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有( ) A.a1>a2 B.a2>a1 C.a1=a2 D.a1,a2的大小不确定 |
7. 难度:中等 | |||||||||||
已知x与y之间的一组数据如表,则y与x的线性回归方程=x+必过( )
A.点(2,2) B.点(1.5,0) C.点(1,2) D.点(1.5,4) |
8. 难度:中等 | |
已知α,β,γ是平面,a,b是两条不重合的直线,下列说法正确的是( ) A.“若a∥b,a⊥α,则b⊥α”是随机事件 B.“若a∥b,a⊂α,则b∥α”是必然事件 C.“若a⊥γ,β⊥γ,则α⊥β”是必然事件 D.“若a⊥α,a∩b=P,则b⊥α”是不可能事件 |
9. 难度:中等 | |
已知某个几何体的三视图如图,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( ) A. B. C. D. |
10. 难度:中等 | |
已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am,an使得=4a1,则的最小值为( ) A. B. C. D.不存在 |
11. 难度:中等 | |
点P(2,-3,-5)关于y轴对称的点的坐标为 . |
12. 难度:中等 | |
某单位有职工200名,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是 . |
13. 难度:中等 | |
右边的程序运行时输出的结果是 . |
14. 难度:中等 | |
用秦九韶算法计算多项式f(x)=8x4+5x3+3x2+2x+1在x=2时的值时,v2= . |
15. 难度:中等 | |
已知a>0,命题p:函数y=ax在R上单调递减,q:设函数y=,函数y>1恒成立,若p和q只有一个为真命题,则a的取值范围 . |
16. 难度:中等 | |
某校高二数学竞赛初赛考试后,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示,若130~140分数段的人数为2人. (1)估计这所学校成绩在90~140分之间学生的参赛人数; (2)估计参赛学生成绩的众数、中位数和平均数. |
17. 难度:中等 | |
设关于x的一元二次方程x2+2ax+b2=0. (1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率. (2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率. |
18. 难度:中等 | |
为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似的表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为100元. (1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低? (2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损? |
19. 难度:中等 | |
已知ABCD-A1B1C1D1是边长为1的正方体,求: (1)直线AC1与平面AA1B1B所成角的正切值; (2)二面角B-AC1-B1的大小. |
20. 难度:中等 | |
根据如图所示的程序框图,输入一个正整数n,将输出的x值依次记为x1,x2,x3,…,xn;输出的y值依次记为y1,y2,y3,…,yn. (1)求数列{xn}的通项公式; (2)写出y1,y2,y3,y4的值,由此猜想出数列{yn}的通项公式; (3)若zn=x1y1+x2y2+…+xnyn,求zn. |
21. 难度:中等 | |
已知A,B分别是直线y=x和y=-x上的两个动点,线段AB的长为2,D是AB的中点. (1)求动点D的轨迹C的方程; (2)若过点(1,0)的直线l与曲线C交于不同两点P、Q, ①当|PQ|=3时,求直线l的方程; ②试问在x轴上是否存在点E(m,0),使•恒为定值?若存在,求出E点的坐标及定值;若不存在,请说明理由. |