1. 难度:中等 | |
设集合M={m∈Z|m≤-3或m≥2},N={n∈Z|-1≤n≤3},则(∁ZM)∩N=( ) A.{0,1} B.{-1,0,1} C.{0,1,2} D.{-1,0,1,2} |
2. 难度:中等 | |
下列各图形不是函数的图象的是( ) A. B. C. D. |
3. 难度:中等 | |
函数y=的定义域是( ) A.[-,-1)∪(1,] B.(-,-1)∪(1,) C.[-2,-1)∪(1,2] D.(-2,-1)∪(1,2) |
4. 难度:中等 | |||||||||||||||||||
根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为( )
A.(-1,0) B.(0,1) C.(1,2) D.(2,3) |
5. 难度:中等 | |
函数f(x)=x2+(3a+1)x+2a在 (-∞,4)上为减函数,则实数a的取值范围是( ) A.a≤-3 B.a≤3 C.a≤5 D.a=-3 |
6. 难度:中等 | |
某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为( ) A. B. C. D. |
7. 难度:中等 | |
函数f(x)是定义域为R的奇函数,当x>0时f(x)=-x+1,则当x<0时,f(x)的表达式为( ) A.f(x)=-x+1 B.f(x)=-x-1 C.f(x)=x+1 D.f(x)=x-1 |
8. 难度:中等 | |
下列各式错误的是( ) A.30.8>30.7 B.log0..50.4>log0..50.6 C.0.75-0.1<0.750.1 D.lg1.6>lg1.4 |
9. 难度:中等 | |
若函数f(x)=(k-1)ax-a-x(a>0,a≠1)在R上既是奇函数,又是减函数,则g(x)=loga(x+k)的图象是( ) A. B. C. D. |
10. 难度:中等 | |
若一系列函数的解析式和值域相同,但定义域不相同,则称这些函数为“同族函数”,例如函数y=x2,x∈[1,2]与函数y=x2,x∈[-2,-1]即为“同族函数”.下面四个函数中能够被用来构造“同族函数”的是( ) A.y=sin B.y= C.y=2x D.y=log2 |
11. 难度:中等 | |
已知幂函数y=f(x)的图象过点(2,),则f(9)= . |
12. 难度:中等 | |
计算:= . |
13. 难度:中等 | |
设f(x)=,则= . |
14. 难度:中等 | |
函数f (x)在(-1,1)上是奇函数,且在(-1,1)上是减函数,若f (1-m)+f (-m)<0,则m的取值范围是 . |
15. 难度:中等 | |
若函数f(x)=1n(x2-ax+1)有最小值,则实数a的取值范围为 . |
16. 难度:中等 | |
已知A={x|3≤x<7},(B={x|2<x<10},C={x|x<a},全集为实数集R. (1)求A∪B,(∁RA)∩B; (2)如果A∩C≠∅,求a的取值范围. |
17. 难度:中等 | |
已知函数 (1)在给定的直角坐标系内画出f(x)的图象; (2)写出f(x)的单调递增区间(不需要证明); (3)写出f(x)的最大值和最小值(不需要证明). |
18. 难度:中等 | |
已知函数f(x)=loga(1-x)+loga(x+3)(0<a<1) (1)求函数f(x)的定义域; (2)求函数f(x)的零点; (3)若函数f(x)的最小值为-4,求a的值. |
19. 难度:中等 | |
已知函数f(x)=,若f(x)满足f(-x)=-f(x). (1)求实数a的值; (2)证明f(x)是R上的增函数; (3)求函数f(x)的值域. |
20. 难度:中等 | |||||||||||||
我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的. 某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定: ①若每月用水量不超过最低限量m立方米时,只付基本费9元和每户每月定额损耗费a元; ②若每月用水量超过m立方米时,除了付基本费和定额损耗费外,超过部分每立方米付n元的超额费; ③每户每月的定额损耗费a不超过5元. (1)求每户每月水费y(元)与月用水量x(立方米)的函数关系; (2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:
|
21. 难度:中等 | |
已知:函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0. (1)求f(0)的值. (2)求f(x)的解析式. (3)已知a∈R,设P:当时,不等式f(x)+3<2x+a恒成立;Q:当x∈[-2,2]时,g(x)=f(x)-ax是单调函数.如果满足P成立的a的集合记为A,满足Q成立的a的集合记为B,求A∩CRB(R为全集). |