1. 难度:中等 | |
设i是虚数单位,复数为纯虚数,则实数a为( ) A.2 B.-2 C. D. |
2. 难度:中等 | |
已知M,N为集合I的非空真子集,且M,N不相等,若N∩(∁IM)=∅,则M∪N=( ) A.M B.N C.I D.∅ |
3. 难度:中等 | |
下面四个条件中,使a>b成立的充分而不必要的条件是( ) A.a>b+1 B.a>b-1 C.a2>b2 D.a3>b3 |
4. 难度:中等 | |
(1+3x)n(其中n∈N且n≥6)的展开式中x5与x6的系数相等,则n=( ) A.6 B.7 C.8 D.9 |
5. 难度:中等 | |
将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图( ) A. B. C. D. |
6. 难度:中等 | |
l1,l2,l3是空间三条不同的直线,则下列命题正确的是( ) A.l1⊥l2,l2⊥l3⇒l1∥l3 B.l1⊥l2,l2∥l3⇒l1⊥l3 C.l1∥l2∥l3⇒l1,l2,l3共面 D.l1,l2,l3共点⇒l1,l2,l3共面 |
7. 难度:中等 | |
某中学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( ) A.4种 B.10种 C.18种 D.20种 |
8. 难度:中等 | |
设m>1,在约束条件下,目标函数z=x+my的最大值小于2,则m 的取值范围为( ) A.(1,) B.(,+∞) C.(1,3) D.(3,+∞) |
9. 难度:中等 | |
若曲线C1:x2+y2-2x=0与曲线C2:y(y-mx-m)=0有四个不同的交点,则实数m的取值范围是( ) A.(-,) B.(-,0)∪(0,) C.[-,] D.(-∞,-)∪(,+∞) |
10. 难度:中等 | |
函数f(x)=axm(1-x)n在区间[0,1]上的图象如图所示,则m,n的值可能是( ) A.m=1,n=1 B.m=1,n=2 C.m=2,n=1 D.m=3,n=1 |
11. 难度:中等 | |
已知与为两个不共线的单位向量,若向量+与向量k-垂直,则实数k= . |
12. 难度:中等 | |
函数f(x)=Asin(ωx+ϕ),(A,ω,ϕ是常数,A>0,ω>0)的部分图象如图所示,则f(0)= . |
13. 难度:中等 | |
已知log2a+log2b≥1,则3a+9b的最小值为 . |
14. 难度:中等 | |
如图是某算法的程序框图,则程序运行后输出的结果是 . |
15. 难度:中等 | |||||||||
马老师从课本上抄录一个随机变量ξ的概率分布律如下表:
|
16. 难度:中等 | |
已知实数a≠0,函数,若f(1-a)=f(1+a),则a的值为 . |
17. 难度:中等 | |
设圆C位于抛物线y2=2x与直线x=3所围成的封闭区域(包含边界)内,则圆C的半径能取到的最大值为 . |
18. 难度:中等 | |
在△ABC中,角A、B、C的对边分别为a,b,c (1)若,求A的值; (2)若,求sinC的值. |
19. 难度:中等 | |
等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6, (Ⅰ)求数列{an}的通项公式; (Ⅱ)设bn=log3a1+log3a2+…+log3an,求数列{}的前n项和. |
20. 难度:中等 | |
如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值. |
21. 难度:中等 | |
已知椭圆.过点(m,0)作圆x2+y2=1的切线I交椭圆G于A,B两点. (I)求椭圆G的焦点坐标和离心率; (Ⅱ)将|AB|表示为m的函数,并求|AB|的最大值. |
22. 难度:中等 | |
已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0. (Ⅰ)求a、b的值; (Ⅱ)如果当x>0,且x≠1时,f(x)>+,求k的取值范围. |