1. 难度:中等 | |
已知cosθ•tanθ<0,那么角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 |
2. 难度:中等 | |
圆(x-2)2+(y+2)2=4截直线x+y-2=0所得的弦长等于( ) A. B. C. D.5 |
3. 难度:中等 | |
已知函数的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N=( ) A.{x|x>-1} B.{x|x<1} C.{x|-1<x<1} D.∅ |
4. 难度:中等 | |
如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A.2+ B. C. D.1+ |
5. 难度:中等 | |
已知O是△ABC所在平面内一点,D为BC边中点,且,那么( ) A. B. C. D. |
6. 难度:中等 | |
设椭圆,双曲线、抛物线y2=2(m+n)x(其中m>n>0)的离心率分别为e1,e2,e3,则( ) A.e1e2>e3 B.e1e2<e3 C.e1e2=e3 D.e1e2与e3大小不确定 |
7. 难度:中等 | |
若不等式组表示的平面区域是一个四边形,则a的取值范围是( ) A. B.0<a≤1 C. D.0<a≤1或 |
8. 难度:中等 | |
对于函数①f(x)=lg(|x-2|+1),②f(x)=(x-2)2,③f(x)=cos(x+2),判断如下三个命题的真假: 命题甲:f(x+2)是偶函数; 命题乙:f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数; 命题丙:f(x+2)-f(x)在(-∞,+∞)上是增函数. 能使命题甲、乙、丙均为真的所有函数的序号是( ) A.①③ B.①② C.③ D.② |
9. 难度:中等 | |
函数f(x)=|2x+1|-|x-4|的最小值是 . |
10. 难度:中等 | |
若数列{an}的前n项和Sn=n2-10n(n=1,2,3,…),则此数列的通项公式为 ;数列nan中数值最小的项是第 项. |
11. 难度:中等 | |
在三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,△ABC,△ACD,△ADB的面积分别为,,,则该三棱锥的体积为 . |
12. 难度:中等 | |
直线y=kx+1(k∈R)与曲线恒有公共点.则非负实数m的取值范围 . |
13. 难度:中等 | |
已知函数在区间(-∞,+∞)是增函数,则常数a的取值范围是 . |
14. 难度:中等 | |||||||||||||||||
已知函数f(x),g(x)分别由如表给出:
|
15. 难度:中等 | |
已知△ABC顶点的直角坐标分别为A(3,4),B(0,0),C(c,0 ) (1)若c=5,求sin∠A的值; (2)若∠A是钝角,求c的取值范围. |
16. 难度:中等 | |
在数列{an}中,a1=1, (1)求{an}的通项公式. (2)若数列{bn}满足a1b1+a2b2+a3b3+…+anbn=,求数列{bn}的通项公式. |
17. 难度:中等 | |
在长方形ABEF中,D,C分别是AF和BE的中点,M和N分别是AB和AC的中点,AF=2AB=2a,将平面DCEF沿着DC折起,使角∠ADF=90°,G是DF上一动点,求证: (1)GN⊥AC (2)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC.并给出证明. |
18. 难度:中等 | |
在平面直角坐标系xOy中,已知圆心在第二象限,半径为2的圆C与直线y=x相切于坐标原点O.椭圆=1与圆C的一个交点到椭圆两点的距离之和为10. (1)求圆C的方程; (2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由. |
19. 难度:中等 | |
已知a∈R,函数f(x)=x2(x-a). (Ⅰ)当a=3时,求f(x)的零点; (Ⅱ)求函数y=f (x)在区间[1,2]上的最小值. |
20. 难度:中等 | |
已知二次函数f(x)=ax2+bx,f(x+1)为偶函数,函数f(x)的图象与直线y=x相切. (1)求f(x)的解析式; (2)若函数g(x)=[f(x)-k]x在(-∞,+∞)上是单调减函数,那么: ①求k的取值范围; ②是否存在区间[m,n](m<n),使得f(x)在区间[m,n]上的值域恰好为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由. |