1. 难度:中等 | |
若集合A={y|y=lgx},B={x|y=},则A∩B为( ) A.[0,1] B.(0,1] C.[0,∞) D.(-∞,1] |
2. 难度:中等 | |
已知α、β是两个不同平面,m、n是两不同直线,下列命题中的假命题是( ) A.若m∥n,m⊥α,则n⊥α B.若m∥α,α∩β=n,则m∥n C.若m⊥α,m⊥β,则α∥β D.若m⊥α,m⊂β,则α⊥β |
3. 难度:中等 | |
设等比数列{an}的前n项和为Sn,已知,则2a2-a4的值是( ) A.0 B.1 C.2 D.3 |
4. 难度:中等 | |
一空间几何体的三视图如图所示,则该几何体的体积为( ) A.12 B.6 C.4 D.2 |
5. 难度:中等 | |
函数是( ) A.周期为π的奇函数 B.周期为π的偶函数 C.周期为2π的奇函数 D.周期为2π的偶函数 |
6. 难度:中等 | |
“a>0”是“方程ax2-3x-1=0至少有一个负数根”的( ) A.充分必要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件 |
7. 难度:中等 | |
下列命题中是假命题的是( ) A.∃m∈{R},使f(x)=(m-1)•是幂函数,且在(0,+∞)上递减 B.∀a>0,函数f(x)=ln2x+lnx-a有零点 C.∃α,β∈R,使cos(α+β)=cosα+sinβ D.∀φ∈R,函数f(x)=sin(2x+φ)都不是偶函数 |
8. 难度:中等 | |
设曲线y=x2+1在其任一点(x,y)处切线斜率为g(x),则函数y=g(x)cosx的部分图象可以为( ) A. B. C. D. |
9. 难度:中等 | |
已知函数f(x)的定义域为A,若其值域也为A,则称区间A为f(x)的保值区间.若g(x)=x+m-lnx的保值区间是[e+∞),则m的值为( ) A.-1 B.1 C.e D.-e |
10. 难度:中等 | |
设M是△ABC内一点,且△ABC的面积为1,定义f(M)=(m,n,p),其中m、n、p分别是△MBC,△MCA,△MAB的面积,若f(M)=(,x,y),则+的最小值是( ) A.8 B.9 C.16 D.18 |
11. 难度:中等 | |
已知200辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,则时速在[60,70]的汽车大约有 辆. |
12. 难度:中等 | |
复数(a∈R,i为虚数单位)是纯虚数,则a= . |
13. 难度:中等 | |
设椭圆=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为,则此椭圆的标准方程为 . |
14. 难度:中等 | |
某程序框图如图所示,该程序运行后输出M,N的值分别为 . |
15. 难度:中等 | |
在1,2,3,4,5这五个数中,任取两个不同的数记作a,b,则满足f(x)=x2-ax+b有两个零点的概率是 . |
16. 难度:中等 | |
设m>1,在约束条件 下,目标函数z=x+5y的最大值为4,则m的值为 . |
17. 难度:中等 | |
已知,且x+2y=1,则的最小值是. |
18. 难度:中等 | |
如图,设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,O是坐标原点,且,∠AOQ=α,α∈[0,π). (Ⅰ)若点Q的坐标是,求的值; (Ⅱ)设函数,求f(α)的值域. |
19. 难度:中等 | |
如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB. (1)设M是线段CD的中点,求证:AM∥平面BCE; (2)求直线CB与平面ABED所成角的余弦值. |
20. 难度:中等 | |
已知数列{an}的前n项和为Sn,a1=3且an+1=2Sn+3,数列{bn}为等差数列,且公差d>0,b1+b2+b3=15; (1)求数列{an}的通项公式; (2)若成等比数列,求数列{bn}的前项和Tn. |
21. 难度:中等 | |
已知f(x)=xlnx,g(x)=x3+ax2-x+2. (Ⅰ)如果函数g(x)的单调递减区间为,求函数g(x)的解析式; (Ⅱ)在(Ⅰ)的条件下,求函数y=g(x)的图象在点P(-1,1)处的切线方程; (Ⅲ)若不等式2f(x)≤g′(x)+2恒成立,求实数a的取值范围. |
22. 难度:中等 | |
已知抛物线C:y=mx2(m>0),焦点为F,直线2x-y+2=0交抛物线C于A、B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q, (1)若抛物线C上有一点R(xR,2)到焦点F的距离为3,求此时m的值; (2)是否存在实数m,使△ABQ是以Q为直角顶点的直角三角形?若存在,求出m的值;若不存在,说明理由. |