1. 难度:中等 | |
设z=1+i(i是虚数单位),则=( ) A.-1-i B.-1+i C.1-i D.1+i |
2. 难度:中等 | |
已知m、n∈R,则>成立的一个充要条件是( ) A.m>0>n B.n>m>0 C.mn(m-n)<0 D.m<n<0 |
3. 难度:中等 | |
已知全集U=R,且A={x||x-1|>2},B={x|x2-6x+8<0},则(CUA)∩B等于( ) A.(2,3) B.[2,3] C.(2,3] D.(-2,3] |
4. 难度:中等 | |
函数f(x)=+lg(3x+1)的定义域是( ) A.(-,+∞) B.(-,1) C.(-,) D.(-∞,-) |
5. 难度:中等 | |
将a2+b2+2ab=(a+b)2改写成全称命题是( ) A.∀a>0,b>0,a2+b2+2ab=(a+b)2 B.∀a,b∈R,a2+b2+2ab=(a+b)2 C.∃a<0,b>0,a2+b2+2ab=(a+b)2 D.∃a,b∈R,a2+b2+2ab=(a+b)2 |
6. 难度:中等 | |
已知函数f(x)=2sinωx(ω>0)在区间上的最小值是-2,则ω的最小值等于( ) A. B. C.2 D.3 |
7. 难度:中等 | |
在R上定义的函数f(x)是偶函数,且f(x)=f(2-x).若f(x)在区间[1,2]上是减函数,则f(x) ( ) A.在区间[-2,-1]上是增函数,在区间[3,4]上是增函数 B.在区间[-2,-1]上是增函数,在区间[3,4]上是减函数 C.在区间[-2,-1]上是减函数,在区间[3,4]上是增函数 D.在区间[-2,-1]上是减函数,在区间[3,4]上是减函数 |
8. 难度:中等 | |
△ABC的三内角A,B,C所对边的长分别为a,b,c设向量,,若,则角C的大小为( ) A. B. C. D. |
9. 难度:中等 | |
若函数f(x)=(k-1)ax-a-x(a>0,a≠1)在R上既是奇函数,又是减函数,则g(x)=loga(x+k)的图象是( ) A. B. C. D. |
10. 难度:中等 | |
若函数f(x)=loga(x3-ax)(a>0,a≠1)在区间内单调递增,则a的取值范围是( ) A. B. C. D. |
11. 难度:中等 | |
定义在R上的偶函数f(x),当x≥0时.f(x)=2x,则满足f(1-2x)<f(3)的x取值范围是 . |
12. 难度:中等 | |
已知函数y=f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线平行于直线6x+2y+5=0,则f(x)极大值与极小值之差为 . |
13. 难度:中等 | |
已知=(1,3),=(1,1),=+λ,若和的夹角是锐角,则λ的取值范围是 . |
14. 难度:中等 | |
函数f(x)=x3+3ax2+3(a+2)x+1有极大值又有极小值,则a的范围是 . |
15. 难度:中等 | |
给出下面的3个命题: (1)函数的最小正周期是; (2)函数在区间上单调递增; (3)是函数的图象的一条对称轴. 其中正确命题的序号是 . |
16. 难度:中等 | |
已知函数 (I)求函数f(x)的最小正周期和单调增区间; (II)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到? |
17. 难度:中等 | |
设函数f(x)=,其中=(2cosx,1),=(cosx,sin2x),x∈R. (1)求f(x)的最小正周期与单调减区间; (2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(A)=2,求A. |
18. 难度:中等 | |
设函数f(x)=x2-2tx+4t3+t2-3t+3,其中x∈R,t∈R,将f(x)的最小值记为g(t). (1)求g(t)的表达式; (2)讨论g(t)在区间[-1,1]内的单调性; (3)若当t∈[-1,1]时,|g(t)|≤k恒成立,其中k为正数,求k的取值范围. |
19. 难度:中等 | |
某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下的工程只需要建两端桥墩之间的桥面和桥墩.经预测一个桥墩的工程费用为256万元,距离为x米的相邻两墩之间的桥面工程费用为万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元. (Ⅰ)试写出y关于x的函数关系式; (Ⅱ)当m=640米时,需新建多少个桥墩才能使y最小? |
20. 难度:中等 | |
设函数f(x)=-x3+3x+2分别在x1、x2处取得极小值、极大值.xoy平面上点A、B的坐标分别为(x1,f(x1))、(x2,f(x2)),该平面上动点P满足,点Q是点P关于直线y=2(x-4)的对称点.求 (I)求点A、B的坐标; (II)求动点Q的轨迹方程. |
21. 难度:中等 | |
已知函数y=f(x)=. (1)求函数y=f(x)的图象在x=处的切线方程; (2)求y=f(x)的最大值; (3)设实数a>0,求函数F(x)=af(x)在[a,2a]上的最小值. |