1. 难度:中等 | |
设集合P={x|x>1},Q={x|x2-x>0},则下列结论正确的是( ) A.P=Q B.P∪Q=R C.P⊊Q D.Q⊊P |
2. 难度:中等 | |
若函数f(x)的定义域为R,则“函数f(x)为奇函数”是“函数f(-x)奇函数”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件 |
3. 难度:中等 | |
已知函数f(x)=sin(ωx+)(ω>0)的最小正周期为π,则该函数的图象( ) A.关于直线x=对称 B.关于点(,0)对称 C.关于直线x=-对称 D.关于点(,0)对称 |
4. 难度:中等 | |
已知一个几何体的三视图及尺寸如图所示,则这个几何体的体积为( ) A.2π B.π C.2 D.1 |
5. 难度:中等 | |
设函数f(x)=xm+ax的导函数f′(x)=2x+1,则数列{}(n∈N*)的前n项和是( ) A. B. C. D. |
6. 难度:中等 | |
设a>b>0,则的最小值是( ) A.1 B.2 C.3 D.4 |
7. 难度:中等 | |
||=1,||=,•=0,点C在∠AOB内,且∠AOC=30°,设=m+n(m、n∈R),则等于( ) A. B.3 C. D. |
8. 难度:中等 | |
函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数,且满足以下三个条件:①f(0)=0;②;③f(1-x)=1-f(x).则=( ) A. B. C.1 D. |
9. 难度:中等 | |
已知{an}是各项均为正数的等比数列,a1a2a3=5,a7a8a9=10,则a4a5a6= . |
10. 难度:中等 | |
已知x+y=,则x2+y2的值是: . |
11. 难度:中等 | |
设有算法如图:如果输入A=144,B=39,则输出的结果是 . |
12. 难度:中等 | |
21×1=2,22×1×3=3×4,23×1×3×5=4×5×6,24×1×3×5×7=5×6×7×8,…依此类推,第n个等式为 . |
13. 难度:中等 | |
若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=ex,试比较f(3),g(0),f(2)三数的大小: |
14. 难度:中等 | |
函数f(x)定义域为D,若满足①f(x)在D内是单调函数;②存在[a,b]⊆D使得f(x)在[a,b]上的值域为,那么就称函数y=f(x)为“好和函数”,若函数(c>0,c≠1)是“好和函数”,则t的取值范围为 . |
15. 难度:中等 | |
把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列{an},若an=2011,则n= . |
16. 难度:中等 | |
已知向量m=(,),n=(,),记f(x)=m•n; (1)若f(x)=1,求的值; (2)若△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函 数f(A)的取值范围. |
17. 难度:中等 | |
如图所示,在正三棱柱ABC-A1B1C1中,底面边长是2,D是棱BC的中点,点M在棱BB1上,且BM=B1M,又CM⊥AC1. (Ⅰ)求证:A1B∥平面AC1D; (Ⅱ)求三棱锥B1-ADC1体积. |
18. 难度:中等 | |
设函数f(x)=ln(x+1) (1)若x>0证明:. (2)若不等式对于x∈[-1,1]及b∈[-1,1]恒成立,求实数m的取值范围. |
19. 难度:中等 | |
某公园准备建一个摩天轮,摩天轮的外围是一个周长为k米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连.经预算,摩天轮上的每个座位与支点相连的钢管的费用为12k元/根,且当两相邻的座位之间的圆弧长为x米时,相邻两座位之间的钢管和其中一个座位的总费用为元,假设座位等距离分布,且至少有四个座位,所有座位都视为点,且不考虑其他因素,记摩天轮的总造价为y元. (Ⅰ)试写出y关于x的函数关系式,并写出定义域; (Ⅱ)当k=100米时,试确定座位的个数,使得总造价最低? |
20. 难度:中等 | |
已知Pn是把Pn-1Pn+1线段作n等分的分点中最靠近Pn+1的点,设线段P1P2,P2P3,…,PnPn+1,的长度分别为 a1,a2,a3,…,an,其中a1=1. (1)写出a2,a3和an的表达式; (2)证明a1+a2+a3+…+an<3; (3)设点Mn(n,an),在这些点中是否存在两个点同时在函数)的图象上,如果存在,请求出点的坐标;如果不存在,请说明理由. |
21. 难度:中等 | |
已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x. (1)求函数g(x)在区间(0,e]上的值域; (2)是否存在实数a,对任意给定的x∈(0,e],在区间[1,e]上都存在两个不同的xi(i=1,2),使得f(xi)=g(x)成立.若存在,求出a的取值范围;若不存在,请说明理由. (3)给出如下定义:对于函数y=F(x)图象上任意不同的两点A(x1,y1),B(x2,y2),如果对于函数y=F(x)图象上的点M(x,y)(其中总能使得F(x1)-F(x2)=F'(x)(x1-x2)成立,则称函数具备性质“L”,试判断函数f(x)是不是具备性质“L”,并说明理由. |