1. 难度:中等 | |
已知复数=( ) A.2i B.-2i C.2-2i D.2+2i |
2. 难度:中等 | |
已知=( ) A.- B. C. D. |
3. 难度:中等 | |
设Sn是等差数列{an}的前n项和,且的值为( ) A. B. C. D. |
4. 难度:中等 | |
已知偶函数f(x)=loga|x-b|在(-∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系是( ) A.f(a+1)≥f(b+2) B.f(a+1)>f(b+2) C.f(a+1)≤f(b+2) D.f(a+1)<f(b+2) |
5. 难度:中等 | |
已知两不共线向量a=(cosα,sinα),b=(cosβ,sinβ),则下列说法不正确的是( ) A.(a+b)⊥(a-b) B.a与b的夹角等于α-β C.|a+b|+|a-b|>2 D.a与b在a+b方向上的投影相等 |
6. 难度:中等 | |
已知函数的图象与直线y=m有三个交点的横坐标分别为x1,x2,x3(x1<x2<x3),那么x1+2x2+x3的值是( ) A. B. C. D. |
7. 难度:中等 | |
已知p:∃x∈R,mx2+2≤0,q:∀x∈R,x2-2mx+1>0,若p∨q为假命题,则实数m的取值范围是( ) A.[1,+∞) B.(-∞,-1] C.(-∞,-2] D.[-1,1] |
8. 难度:中等 | |
设{an}是任意等比数列,它的前n项和,前2n项和与前3n项和分别为X,Y,Z,则下列等式中恒成立的是( ) A.X+Z=2Y B.Y(Y-X)=Z(Z-X) C.Y2=XZ D.Y(Y-X)=X(Z-X) |
9. 难度:中等 | |
函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( ) A.(-1,1) B.(-1,+∞) C.(-∞,-l) D.(-∞,+∞) |
10. 难度:中等 | |
已知函数f(x)=ex-1,g(x)=-x2+4x-3,若有f(a)=g(b),则b的取值范围为( ) A. B.(2-,2+) C.[1,3] D.(1,3) |
11. 难度:中等 | |
若= . |
12. 难度:中等 | |
若的值为 . |
13. 难度:中等 | |
已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面积为 . |
14. 难度:中等 | |
在四边形ABCD中,,则四边形ABCD的面积为 . |
15. 难度:中等 | |
已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a、b∈R满足:f=af(b)+bf(a),f(2)=2,an=(n∈N*),bn=(n∈N*),考察下列结论: ①f(0)=f(1); ②f(x)为偶函数; ③数列{bn}为等差数列; ④数列{an}为等比数列, 其中正确的是 .(填序号) |
16. 难度:中等 | |
已知cosα=,cos(α-β)=,且0<β<α<, (Ⅰ)求tan2α的值; (Ⅱ)求β. |
17. 难度:中等 | |
设函数f(x)=是奇函数(a,b,c都是整数),且f(1)=2,f(2)<3. (1)求a,b,c的值; (2)当x<0,f(x)的单调性如何?用单调性定义证明你的结论. |
18. 难度:中等 | |
已知等差数列{an}中,a3=-4,a1+a10=2, (1)求数列{an}的通项公式; (2)若数列{bn}满足an=log3bn,设Tn=b1•b2…bn,当n为何值时,Tn>1. |
19. 难度:中等 | |
在锐角△ABC中,已知内角A、B、C所对的边分别为a、b、c,且(tanA-tanB)=1+tanA•tanB. (1)若a2-ab=c2-b2,求A、B、C的大小; (2)已知向量,,求|的取值范围. |
20. 难度:中等 | |
已知向量, (1)求的最大值和最小值; (2)若,求k的取值范围. |
21. 难度:中等 | |
已知函数f(x)=4x3+3tx2-6t2x+t-1,x∈R,其中t∈R. (Ⅰ)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程; (Ⅱ)当t≠0时,求f(x)的单调区间; (Ⅲ)证明:对任意的t∈(0,+∞),f(x)在区间(0,1)内均存在零点. |