1. 难度:中等 | |
已知全集U=R,集合A={x|x2-2x-3>0},B={x|2<x<4},那么集合CUA∩B=( ) A.{x|-1≤x≤4} B.{x|2<x≤3} C.{x|2≤x<3} D.{x|-1<x<4} |
2. 难度:中等 | |
命题甲:x≠2或y≠3;命题乙:x+y≠5,则甲是乙的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分又不必要条件 |
3. 难度:中等 | |
函数的定义域为( ) A.(-4,-1) B.(-4,1) C.(-1,1) D.(-1,1] |
4. 难度:中等 | |
某程序框图如图所示,现输入如下四个函数,则可以输出的函数是( ) A.f(x)=x2 B. C.f(x)=x2 D.f(x)=sin |
5. 难度:中等 | |
已知,则( ) A.a>b>c B.b>a>c C.a>c>b D.c>a>b |
6. 难度:中等 | |
设函数则不等式f(x)>f(1)的解集是( ) A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞) C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3) |
7. 难度:中等 | |
已知f(x)在R上是奇函数,且f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=( ) A.-2 B.2 C.-98 D.98 |
8. 难度:中等 | |
设函数y=f(x)(x∈R)的图象关于直线x=0及直线x=1对称,且x∈[0,1]时,f(x)=x2,则= ( ) A. B. C. D. |
9. 难度:中等 | |
如图是导函数y=f′(x)的图象,则下列命题错误的是( ) A.导函数y=f′(x)在x=x1处有极小值 B.导函数y=f′(x)在x=x2处有极大值 C.函数y=f(x)在x=x3处有极小值 D.函数y=f(x)在x=x4处有极小值 |
10. 难度:中等 | |
若函数y=f(x)(x∈R)满足f(x+2)=f(x)且x∈[-1,1]时,f(x)=1-x2,函数g(x)=,则函数h(x)=f(x)-g(x)在区间[-5,5]内的与x轴交点的个数为( ) A.5 B.7 C.8 D.10 |
11. 难度:中等 | |
计算:+lg25+2lg2+eln2= . |
12. 难度:中等 | |
设f(x)是奇函数,且当x<0时,f(x)=x2+x,则当x>0时,f(x)= . |
13. 难度:中等 | |
是偶函数,且y=f(x)在(0,+∞)上是减函数,则n= . |
14. 难度:中等 | |
定义在(-1,1)上的函数f(x)=-5x+sinx,如果f(1-a)+f(1-a2)>0,则实数a的取值范围为 . |
15. 难度:中等 | |
若关于x的方程3tx2+(3-7t)x+4=0的两实根α,β满足0<α<1<β<2,则实数t的取值范围是 . |
16. 难度:中等 | |
过双曲线的右焦点F和虚轴端点B作一条直线,若右顶点A到直线FB的距离等于,则双曲线的离心率e= . |
17. 难度:中等 | |
汽车的最佳使用年限是使年均消耗费用最低的年限(年均消耗费用=年均成本费用+年均维修费),设某种汽车的购车的总费用为50000元;使用中每年的保险费、养路费及汽油费合计为6000元;前x年的总维修费y满足y=ax2+bx,已知第一年的总维修费为1000元,前两年的总维修费为3000元,则这种汽车的最佳使用年限为 年. |
18. 难度:中等 | |
已知二次函数f(x)的图象过A(-1,0),B(3,0),C(1,-8). (1)求f(x)的解析式; (2)求不等式f(x)≥0的解集. (3)将f(x)的图象向右平移2个单位,求所得图象的函数解析式g(x). |
19. 难度:中等 | |
设f(x)是定义在R上的函数,对m,n∈R恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1. (1)求证:f(0)=1; (2)求证:当x∈R时,恒有f(x)>0; (3)求证:f(x)在R上是减函数. |
20. 难度:中等 | |
如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC的中点. (1)求证:PA∥平面BDM; (2)求直线AC与平面ADM所成角的正弦值. |
21. 难度:中等 | |
已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1. (Ⅰ)求曲线C的方程 (Ⅱ)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有<0?若存在,求出m的取值范围;若不存在,请说明理由. |
22. 难度:中等 | |
设函数x(x∈R),其中m>0. (1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率; (2)求函数f(x)的单调区间与极值; (3)已知函数f(x)有三个互不相同的零点0,x1,x2,且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范围. |