1. 难度:中等 | |
已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩∁NB=( ) A.{1,5,7} B.{3,5,7} C.{1,3,9} D.{1,2,3} |
2. 难度:中等 | |
已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
3. 难度:中等 | |
下列四个函数中,在区间(0,1)上为减函数的是( ) A.y=log2 B. C. D. |
4. 难度:中等 | |
已知,则等于( ) A. B.7 C. D.-7 |
5. 难度:中等 | |
函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a=( ) A.2 B.3 C.4 D.5 |
6. 难度:中等 | |
要得到函数y=sin(2x-)的图象,只需将函数y=sin2x的图象( ) A.向左平移个单位 B.向右平移个单位 C.向左平移个单位 D.向右平移个单位 |
7. 难度:中等 | |
一张正方形的纸片,剪去两个一样的小矩形得到一个“E”形图案,如图所示,设小矩形的长、宽分别为x、y,剪去部分的面积为20,若2≤x≤10,记y=f(x),则y=f(x)的图象是( ) A. B. C. D. |
8. 难度:中等 | |
下列类比推理命题(其中Q为有理数集,R为实数集,C为复数集): ①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈C,则a-b=0⇒a=b”; ②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“若a,b,c,d∈Q,则”; ③“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”. 其中类比结论正确的个数是( ) A.0 B.1 C.2 D.3 |
9. 难度:中等 | |
下图给出4个幂函数的图象,则图象与函数的大致对应是( ) A.①,②y=x2,③,④y=x-1 B.①y=x3,②y=x2,③,④y=x-1 C.①y=x2,②y=x3,③,④y=x-1 D.①,②,③y=x2,④y=x-1 |
10. 难度:中等 | |
若函数,若f(m)<f(-m),则实数m的取值范围是( ) A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞) C.(-1,0)∪(1,+∞) D.(-∞,-1)∪(0,1) |
11. 难度:中等 | |
设奇函数f(x)在(0,+∞)上是增函数,且f(1)=0,则不等式x[f(x)-f(-x)]<0的解集为( ) A.{x|-1<x<0,或>1} B.{x|x<-1,或0<x<1} C.{x|x<-1,或x>1} D.{x|-1<x<0,或0<x<1} |
12. 难度:中等 | |
若函数f(x)满足,当x∈[0,1]时,f(x)=x,若在区间(-1,1]上,g(x)=f(x)-mx-m有两个零点,则实数m的取值范围是( ) A. B. C. D. |
13. 难度:中等 | |
曲线y=x3+x+1在点(1,3)处的切线方程是 . |
14. 难度:中等 | |
若函数f(x)=3cos(ωx+θ)对任意的x都有f(+x)=f(-x),则f()等于 |
15. 难度:中等 | |
若的最大值是3,则a的值是 . |
16. 难度:中等 | |
在下列四个结论中,正确的有 .(填序号) ①若A是B的必要不充分条件,则非B也是非A的必要不充分条件 ②“”是“一元二次不等式ax2+bx+c≥0的解集为R”的充要条件 ③“x≠1”是“x2≠1”的充分不必要条件 ④“x≠0”是“x+|x|>0”的必要不充分条件 |
17. 难度:中等 | |
已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1 (1)求f(9),f(27)的值 (2)解不等式f(x)+f(x-8)<2. |
18. 难度:中等 | |
如图,点A,B是单位圆上的两点,A,B点分别在第一、二象限,点C是圆与x轴正半轴的交点,△AOB是正三角形,若点A的坐标为(,),记∠COA=α. (1)求的值; (2)求|BC|2的值. |
19. 难度:中等 | |
已知函数 (1)讨论函数f(x)的奇偶性,并说明理由; (2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围. |
20. 难度:中等 | |
已知向量=(cosα,sinα),=(cosβ,sinβ),|-|=. (1)求cos(α-β)的值; (2)若0<α<,-<β<0,且sinβ=-,求sinα的值. |
21. 难度:中等 | |
某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费. (1)求该月需用去的运费和保管费的总费用f(x); (2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由. |
22. 难度:中等 | |
已知函数f(x)=x3+ax2+x+2. (Ⅰ)若a=-1,令函数g(x)=2x-f(x),求函数g(x)在(-1,2)上的极大值、极小值; (Ⅱ)若函数f(x)在上恒为单调递增函数,求实数a的取值范围. |