1. 难度:中等 | |
直线的倾斜角的大小是( ) A.30° B.60° C.120° D.150° |
2. 难度:中等 | |
点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是( ) A.-1<a<1 B.0<a<1 C.a<-1或a>1 D.a=±1 |
3. 难度:中等 | |
直线kx-y+1=3k,当k变动时,所有直线都通过定点( ) A.(0,0) B.(0,1) C.(3,1) D.(2,1) |
4. 难度:中等 | |
如图Rt△O′A′B′是一平面图形的直观图,斜边O′B′=2,则这个平面图形的面积是( ) A. B.1 C. D. |
5. 难度:中等 | |
已知点A(2,3),B(-3,-2).若直线l过点P(1,1)且与线段AB相交,则直线l的斜率k的取值范围是( ) A. B. C.k≥2或 D.k≤2 |
6. 难度:中等 | |
在正方体ABCD-A1B1C1D1中,M、N为棱AB与AD的中点,则异面直线MN与BD1所成角的余弦值是( ) A. B. C. D. |
7. 难度:中等 | |
已知α,β为互不重合的平面,m,n为互不重合的直线,给出下列四个命题: ①若m⊥α,n⊥α,则m∥n; ②若m⊂α,n⊂α,m∥β,n∥β,,则 α∥β; ③若α⊥β,α∩β=m,n⊂α,n⊥m,则n⊥β; ④若m⊥α,α⊥β,m∥n,则n∥β.其中所有正确命题的序号是( ) A.①③ B.②④ C.①④ D.③④ |
8. 难度:中等 | |
已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为( ) A.(x+1)2+(y-1)2=2 B.(x-1)2+(y+1)2=2 C.(x-1)2+(y-1)2=2 D.(x+1)2+(y+1)2=2 |
9. 难度:中等 | |
已知ab≠0,点M(a,b)是圆x2+y2=r2内一点,直线m是以点M为中点的弦所在的直线,直线l的方程是ax+by=r2,则下列结论正确的是( ) A.m∥l,且l与圆相交 B.l⊥m,且l与圆相切 C.m∥l,且l与圆相离 D.l⊥m,且l与圆相离 |
10. 难度:中等 | |
点P在椭圆上运动,Q、R分别在两圆(x+1)2+y2=1和(x-1)2+y2=1上运动,则|PQ|+|PR|的最大值为( ) A.3 B.4 C.5 D.6 |
11. 难度:中等 | |
已知点,O是坐标原点,点P(x,y)的坐标满足,设z为在上的投影,则z的取值范围是( ) A. B.[-3,3] C. D. |
12. 难度:中等 | |
如图,在透明塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,将容器底面一边BC固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法: ①水的部分始终呈棱柱状; ②水面四边形EFGH的面积不改变; ③棱A1D1始终与水面EFGH平行; ④当E∈AA1时,AE+BF是定值. 其中正确说法是( ) A.①②③ B.①③ C.①②③④ D.①③④ |
13. 难度:中等 | |
若直线x-3y+7=0与直线3x+my-5=0互相垂直,则实数m= . |
14. 难度:中等 | |
若椭圆的短轴为AB,它的一个焦点为F1,则满足△ABF1为等边三角形的椭圆的离心率是 . |
15. 难度:中等 | |
若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为 . |
16. 难度:中等 | |
从点(2,3)射出的光线沿与直线x-2y=0平行的直线射到y轴上,则经y轴反射的光线所在的直线方程为 . |
17. 难度:中等 | |
圆C的半径为1,圆心在第一象限,与y轴相切,与x轴相交于A、B,|AB|=,则该圆的标准方程是 . |
18. 难度:中等 | |
已知点M(a,b)在直线3x+4y=15上,则的最小值为 . |
19. 难度:中等 | |
设直线l的方程为(a+1)x+y+2-a=0(a∈R). (1)若l在两坐标轴上的截距相等,求l的方程; (2)若l不经过第二象限,求实数a的取值范围. |
20. 难度:中等 | |
已知矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为:x-3y-6=0,点T(-1,1)在AD边所在直线上. (1)求矩形ABCD外接圆的方程; (2)求矩形ABCD外接圆中,过点G(1,1)的最短弦EF所在的直线方程. |
21. 难度:中等 | |
设直线3x+y+m=0与圆x2+y2+x-2y=0相交于P、Q两点,O为坐标原点,若OP⊥OQ,求m的值. |
22. 难度:中等 | |
已知椭圆的两个焦点为F1、F2,点P在椭圆G上,且PF1⊥F1F2,且,斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2). (1)求椭圆G的方程; (2)求△PAB的面积. |
23. 难度:中等 | |
如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1. (I)求证:BC⊥平面ACFE; (Ⅱ)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围. |
24. 难度:中等 | |
如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率e=的椭圆C2与抛物线C1在x轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动. (1)当m=1时,求椭圆C2的方程; (2)当△PF1F2的边长恰好是三个连续的自然数时,求△MPQ面积的最大值. |