相关试卷
当前位置:首页 > 高中数学试卷 > 试卷信息
2011-2012年学广东省梅州市东山中学高三(上)期中数学试卷(理科)(解析版)
一、选择题
详细信息
1. 难度:中等
已知函数manfen5.com 满分网的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N=( )
A.{x|x>-1}
B.{x|x<1}
C.{x|-1<x<1}
D.∅
详细信息
2. 难度:中等
若向量manfen5.com 满分网满足manfen5.com 满分网manfen5.com 满分网,则manfen5.com 满分网等于( )
A.4
B.3
C.2
D.0
详细信息
3. 难度:中等
manfen5.com 满分网,,则cos(π-α)的值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.-manfen5.com 满分网
详细信息
4. 难度:中等
将函数manfen5.com 满分网的图象向右平移manfen5.com 满分网个单位后,其图象的一条对称轴方程为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
详细信息
5. 难度:中等
若函数manfen5.com 满分网,则manfen5.com 满分网等于( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.2
D.-2
详细信息
6. 难度:中等
若0<a<manfen5.com 满分网,-manfen5.com 满分网<β<0,cos(manfen5.com 满分网+α)=manfen5.com 满分网,cos(manfen5.com 满分网-manfen5.com 满分网)=manfen5.com 满分网,则cos(α+manfen5.com 满分网)=( )
A.manfen5.com 满分网
B.-manfen5.com 满分网
C.manfen5.com 满分网
D.-manfen5.com 满分网
详细信息
7. 难度:中等
对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,那么x的取值范围是( )
A.(1,3)
B.(-∞,1)∪(3,+∞)
C.(1,2)
D.(3,+∞)
详细信息
8. 难度:中等
函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( )
A.(-1,1)
B.(-1,+∞)
C.(-∞,-l)
D.(-∞,+∞)
二、填空题
详细信息
9. 难度:中等
manfen5.com 满分网=9,则a=   
详细信息
10. 难度:中等
在△ABC中,已知manfen5.com 满分网,则角A的值为   
详细信息
11. 难度:中等
函数manfen5.com 满分网的图象在manfen5.com 满分网处的切线方程为   
详细信息
12. 难度:中等
若不等式|2x-3|>4与不等式x2+px+q>0的解集相同,则manfen5.com 满分网=   
详细信息
13. 难度:中等
已知函数f(x)=ex-2x+a有零点,则a的取值范围是   
详细信息
14. 难度:中等
设函数y=f(x)由方程x|x|+y|y|=1确定,下列结论正确的是     (请将你认为正确的序号都填上)
(1)f(x)是R上的单调递减函数;
(2)对于任意x∈R,f(x)+x>0恒成立;
(3)对于任意a∈R,关于x的方程f(x)=a都有解;
(4)f(x)存在反函数f-1(x),且对于任意x∈R,总有f(x)=f-1(x)成立.
三、解答题
详细信息
15. 难度:中等
在△ABC中,a,b,c分别是三个内角A,B,C的对边.若a=2,manfen5.com 满分网manfen5.com 满分网
(1)求角B的余弦值;
(2)求△ABC的面积S.
详细信息
16. 难度:中等
已知a∈R,
命题p:实系数一元二次方程x2+ax+2=0无实根;
命题q:存在点(x,y)同时满足x2+y2=4且(x+a)2+y2=1.
试判断:命题p是命题q的什么条件(充分、必要、充分不必要、必要不充分、充要或既不充分也不必要条件)?请说明你的理由.
详细信息
17. 难度:中等
已知函数manfen5.com 满分网
(I)当a=1时,求函数f (x)的单调递增区间;
(Ⅱ)当a<0且x∈[0,π]时,函数f (x)的值域是[3,4],求a+b的值.
详细信息
18. 难度:中等
manfen5.com 满分网请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).
(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
详细信息
19. 难度:中等
已知函数f(x)=2x+alnx(a∈R)
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个零点,求实数a的取值范围;
(3)若函数f(x)的最小值为h(a),m,n为h(a)定义域A中的任意两个值,求证:manfen5.com 满分网
详细信息
20. 难度:中等
对于正整数a,b,存在唯一一对整数q和r,使得a=bq+r,0≤r<b.特别地,当r=0时,称b能整除a,记作b|a,已知A={1,2,3,…,23}.
(Ⅰ)存在q∈A,使得2011=91q+r(0≤r<91),试求q,r的值;
(Ⅱ)求证:不存在这样的函数f:A→{1,2,3},使得对任意的整数x1,x2∈A,若|x1-x2|∈{1,2,3},则f(x1)≠f(x2);
(Ⅲ)若B⊆A,card(B)=12(card(B)指集合B 中的元素的个数),且存在a,b∈B,b<a,b|a,则称B为“和谐集”.求最大的m∈A,使含m的集合A的有12个元素的任意子集为“和谐集”,并说明理由.
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.