1. 难度:中等 | |
执行如图所示的程序框图,输出的S值为( ) A.2 B.4 C.8 D.16 |
2. 难度:中等 | |
过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 |
3. 难度:中等 | |
下列有关命题的说法错误的是( ) A.命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0” B.若p∨q为真命题,则p、q均为真命题 C.“x=2”是“x2-3x+2=0”的充分不必要条件 D.对于命题p:∃x∈R使得x2+x+1<0,则¬p:∀x∈R,均有x2+x+1≥0 |
4. 难度:中等 | |
已知a,b是两条不重合的直线,α,β是两个不重合的平面,下列命题中正确的是( ) A.a∥b,b∥α,则a∥α B.a,b⊂α,a∥β,b∥β,则α∥β C.a⊥α,b∥α,则a⊥b D.当a⊂α,且b⊄α时,若b∥α,则a∥b |
5. 难度:中等 | |
从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么对立的两个事件是( ) A.至少有1个白球,至少有1个红球 B.至少有1个白球,都是红球 C.恰有1个白球,恰有2个白球 D.至少有1个白球,都是白球 |
6. 难度:中等 | |
甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( ) A.甲的成绩的平均数小于乙的成绩的平均数 B.甲的成绩的中位数等于乙的成绩的中位数 C.甲的成绩的方差小于乙的成绩的方差 D.甲的成绩的极差小于乙的成绩的极差 |
7. 难度:中等 | |
一个几何体的三视图如图所示,则该几何体外接球的表面积为( ) A. B. C. D. |
8. 难度:中等 | |
已知椭圆的焦点为F1、F2,在长轴A1A2上任取一点M,过M作垂直于A1A2的直线交椭圆于P,则使得的M点的概率为( ) A. B. C. D. |
9. 难度:中等 | |
设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是( ) A.[1-,1+] B.(-∞,1-]∪[1+,+∞) C.[2-2,2+2] D.(-∞,2-2]∪[2+2,+∞) |
10. 难度:中等 | |
设F1、F2分别为双曲线:-=1(a>0,b>0)的左、右焦点,P为双曲线右支上任一点,若的最小值为8a,则该双曲线的离心率的取值范围是( ) A.[3,+∞) B.(1,3] C.(1,] D.[,+∞) |
11. 难度:中等 | |
用秦九韶算法计算多项式f(x)=3x6+4x5+5x4+6x3+7x2+8x+1当x=0.4时的值时,需要做乘法和加法的次数共 次. |
12. 难度:中等 | |||||||||||
某单位为了了解用电量y度与气温x°C之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
|
13. 难度:中等 | |
如图,二面角α-l-β的大小是60°,线段AB⊂α.B∈l,AB与l所成的角为30°.则AB与平面β所成的角的正弦值是 . |
14. 难度:中等 | |
设命题p:,q:函数y=x2+4x+4(a+2)只有负零点.则p是q成立的 .(填条件命题) |
15. 难度:中等 | |
在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是 (写出所有正确命题的编号). ①存在这样的直线,既不与坐标轴平行又不经过任何整点 ②如果k与b都是无理数,则直线y=kx+b不经过任何整点 ③直线l经过无穷多个整点,当且仅当l经过两个不同的整点 ④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数 ⑤存在恰经过一个整点的直线. |
16. 难度:中等 | |
已知命题p:∀x∈[1,2],x2-a≥0;命题q:∃x∈R,使得x2+(a-1)x+1<0.若“p或q”为真,“p且q”为假,求实数a的取值范围. |
17. 难度:中等 | |
某校高二数学竞赛初赛考试后,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示,若130~140分数段的人数为2人. (1)估计这所学校成绩在90~140分之间学生的参赛人数; (2)估计参赛学生成绩的众数、中位数和平均数. |
18. 难度:中等 | |
如图,在锥体P-ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=,PB=2,E,F分别是BC,PC的中点 (1)证明:AD⊥平面DEF (2)求二面角P-AD-B的余弦值. |
19. 难度:中等 | |
已知函数f(x)=x2-2ax+b,a,b∈R. (1)若a从集合{0,1,2,3}中任取一个元素,b从集合{0,1,2}中任取一个元素,求方程f(x)=0有两个不相等实根的概率; (2)若a从区间[0,2]中任取一个数,b从区间[0,3]中任取一个数,求方程f(x)=0没有实根的概率. |
20. 难度:中等 | |
已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|. (1)求实数a,b间满足的等量关系; (2)求线段PQ长的最小值; (3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程. |
21. 难度:中等 | |
已知直线l与椭圆C:交于P(x1,y1),Q(x2,y2)两不同点,且△OPQ的面积S△OPQ=,其中O为坐标原点. (Ⅰ)证明x12+x22和y12+y22均为定值; (Ⅱ)设线段PQ的中点为M,求|OM|•|PQ|的最大值; (Ⅲ)椭圆C上是否存在点D,E,G,使得S△ODE=S△ODG=S△OEG=?若存在,判断△DEG的形状;若不存在,请说明理由. |