1. 难度:中等 | |
抛物线y=-4x2的焦点坐标是( ) A.(0,1) B. C. D.(0,-1) |
2. 难度:中等 | |
如果双曲线上一点P到它的右焦点的距离是8,那么点P到它的右准线的距离是( ) A.10 B. C. D. |
3. 难度:中等 | |
短轴长为,离心率为的椭圆的两个焦点分别为F1,F2,过F1作直线交椭圆于A,B两点,则△ABF2的周长为( ) A.24 B.12 C.6 D.3 |
4. 难度:中等 | |
若函数f(x)=,则f′(x)是( ) A.仅有最小值的奇函数 B.仅有最大值的偶函数 C.既有最大值又有最小值的偶函数 D.非奇非偶函数 |
5. 难度:中等 | |
已知(3x2+k)dx=16,则k=( ) A.1 B.2 C.3 D.4 |
6. 难度:中等 | |
若上是减函数,则b的取值范围是( ) A.[-1,+∞) B.(-1,+∞) C.(-∞,-1] D.(-∞,-1) |
7. 难度:中等 | |
在三棱柱ABC-A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是( ) A.30° B.45° C.60° D.90° |
8. 难度:中等 | |
如图,在空间直角坐标系中有直三棱柱ABC-A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为( ) A. B. C. D. |
9. 难度:中等 | |
设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不可能正确的是( ) A. B. C. D. |
10. 难度:中等 | |
设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为( ) A.4 B.- C.2 D.- |
11. 难度:中等 | |
已知F1、F2分别是双曲线-=1(a>0,b>0)的左、右焦点,以坐标原点O为圆心,OF1为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于a2时,双曲线的离心率为( ) A. B. C. D.2 |
12. 难度:中等 | |
设函数是定义在R上的函数,其中f(x)的导函数f′(x)满足f′(x)<f(x)对于x∈R恒成立,则( ) A.f(2)>e2f(0),f(2012)>e2012f(0) B.f(2)<e2f(0),f(2012)<e2012f(0) C.f(2)>e2f(0),f(2012)<e2012f(0) D.f(2)<e2f(0),f(2012)>e2012f(0) |
13. 难度:中等 | |
已知函数y=f(x)的图象在M(1,f(1))处的切线方程是+2,f(1)+f′(1)= . |
14. 难度:中等 | |
函数f(x)=12x-x3在区间[-3,3]上的最小值是 . |
15. 难度:中等 | |
已知双曲线,(a,b∈R+)的离心率e∈[],则一条渐近线与实轴所成的角的取值范围是 . |
16. 难度:中等 | |
已知函数f(x)为一次函数,其图象经过点(3,4),且f(x)dx=1,则函数f(x)的解析式为 . |
17. 难度:中等 | |
抛物线顶点在原点,它的准线过双曲线-=1(a>0,b>0)的一个焦点,并与双曲线实轴垂直,已知抛物线与双曲线的一个交点为(,),求抛物线与双曲线方程. |
18. 难度:中等 | |
如图,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,AB∥DC,DC=DD1=2AD=2AB=2. (1)求证:DB⊥平面B1BCC1; (2)设E是DC上一点,试确定E的位置,使得D1E∥平面A1BD,并说明理由. |
19. 难度:中等 | |
已知函数f(x)=lnx-ax,g(x)=f(x)+f'(x),其中a是正实数. (1)若当1≤x≤e时,函数f(x)有最大值-4,求函数f(x)的表达式; (2)求a的取值范围,使得函数g(x)在区间(0,+∞)上是单调函数. |
20. 难度:中等 | |
如图,等边△SAB与直角梯形ABCD垂直,AD⊥AB,BC⊥AB,AB=BC=2,AD=1.若E,F分别为AB,CD的中点. (1)求||的值; (2)求面SCD与面SAB所成的二面角大小. |
21. 难度:中等 | |
已知椭圆.过点(m,0)作圆x2+y2=1的切线I交椭圆G于A,B两点. (I)求椭圆G的焦点坐标和离心率; (Ⅱ)将|AB|表示为m的函数,并求|AB|的最大值. |
22. 难度:中等 | |
已知函数f(x)=lnx,g(x)=(a>0),设F(x)=f(x)+g(x). (Ⅰ)求F(x)的单调区间; (Ⅱ)若以y=F(x)(x∈(0,3])图象上任意一点P(x,y)为切点的切线的斜率 k恒成立,求实数a的最小值. (Ⅲ)是否存在实数m,使得函数y=g()+m-1的图象与y=f(1+x2)的图象恰好有四个不同的交点?若存在,求出m的取值范围,若不存在,说明理由. |