相关试卷
当前位置:首页 > 高中数学试卷 > 试卷信息
2012-2013学年河南省安阳一中高二(上)第二次段考数学试卷(理科)(解析版)
一、选择题
详细信息
1. 难度:中等
抛物线y=-4x2的焦点坐标是( )
A.(0,1)
B.manfen5.com 满分网
C.manfen5.com 满分网
D.(0,-1)
详细信息
2. 难度:中等
如果双曲线manfen5.com 满分网上一点P到它的右焦点的距离是8,那么点P到它的右准线的距离是( )
A.10
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
详细信息
3. 难度:中等
短轴长为manfen5.com 满分网,离心率为manfen5.com 满分网的椭圆的两个焦点分别为F1,F2,过F1作直线交椭圆于A,B两点,则△ABF2的周长为( )
A.24
B.12
C.6
D.3
详细信息
4. 难度:中等
若函数f(x)=manfen5.com 满分网,则f′(x)是( )
A.仅有最小值的奇函数
B.仅有最大值的偶函数
C.既有最大值又有最小值的偶函数
D.非奇非偶函数
详细信息
5. 难度:中等
已知manfen5.com 满分网(3x2+k)dx=16,则k=( )
A.1
B.2
C.3
D.4
详细信息
6. 难度:中等
manfen5.com 满分网上是减函数,则b的取值范围是( )
A.[-1,+∞)
B.(-1,+∞)
C.(-∞,-1]
D.(-∞,-1)
详细信息
7. 难度:中等
在三棱柱ABC-A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是( )
A.30°
B.45°
C.60°
D.90°
详细信息
8. 难度:中等
如图,在空间直角坐标系中有直三棱柱ABC-A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
详细信息
9. 难度:中等
设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不可能正确的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
详细信息
10. 难度:中等
设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为( )
A.4
B.-manfen5.com 满分网
C.2
D.-manfen5.com 满分网
详细信息
11. 难度:中等
已知F1、F2分别是双曲线manfen5.com 满分网-manfen5.com 满分网=1(a>0,b>0)的左、右焦点,以坐标原点O为圆心,OF1为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于a2时,双曲线的离心率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.2
详细信息
12. 难度:中等
设函数manfen5.com 满分网是定义在R上的函数,其中f(x)的导函数f′(x)满足f′(x)<f(x)对于x∈R恒成立,则( )
A.f(2)>e2f(0),f(2012)>e2012f(0)
B.f(2)<e2f(0),f(2012)<e2012f(0)
C.f(2)>e2f(0),f(2012)<e2012f(0)
D.f(2)<e2f(0),f(2012)>e2012f(0)
二、填空题
详细信息
13. 难度:中等
已知函数y=f(x)的图象在M(1,f(1))处的切线方程是manfen5.com 满分网+2,f(1)+f′(1)=   
详细信息
14. 难度:中等
函数f(x)=12x-x3在区间[-3,3]上的最小值是   
详细信息
15. 难度:中等
已知双曲线manfen5.com 满分网,(a,b∈R+)的离心率e∈[manfen5.com 满分网],则一条渐近线与实轴所成的角的取值范围是   
详细信息
16. 难度:中等
已知函数f(x)为一次函数,其图象经过点(3,4),且manfen5.com 满分网f(x)dx=1,则函数f(x)的解析式为   
三、解答题
详细信息
17. 难度:中等
抛物线顶点在原点,它的准线过双曲线manfen5.com 满分网-manfen5.com 满分网=1(a>0,b>0)的一个焦点,并与双曲线实轴垂直,已知抛物线与双曲线的一个交点为(manfen5.com 满分网manfen5.com 满分网),求抛物线与双曲线方程.
详细信息
18. 难度:中等
如图,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,AB∥DC,DC=DD1=2AD=2AB=2.
(1)求证:DB⊥平面B1BCC1
(2)设E是DC上一点,试确定E的位置,使得D1E∥平面A1BD,并说明理由.

manfen5.com 满分网
详细信息
19. 难度:中等
已知函数f(x)=lnx-ax,g(x)=f(x)+f'(x),其中a是正实数.
(1)若当1≤x≤e时,函数f(x)有最大值-4,求函数f(x)的表达式;
(2)求a的取值范围,使得函数g(x)在区间(0,+∞)上是单调函数.
详细信息
20. 难度:中等
如图,等边△SAB与直角梯形ABCD垂直,AD⊥AB,BC⊥AB,AB=BC=2,AD=1.若E,F分别为AB,CD的中点.
(1)求|manfen5.com 满分网manfen5.com 满分网|的值; 
(2)求面SCD与面SAB所成的二面角大小.

manfen5.com 满分网
详细信息
21. 难度:中等
已知椭圆manfen5.com 满分网.过点(m,0)作圆x2+y2=1的切线I交椭圆G于A,B两点.
(I)求椭圆G的焦点坐标和离心率;
(Ⅱ)将|AB|表示为m的函数,并求|AB|的最大值.
详细信息
22. 难度:中等
已知函数f(x)=lnx,g(x)=manfen5.com 满分网(a>0),设F(x)=f(x)+g(x).
(Ⅰ)求F(x)的单调区间;
(Ⅱ)若以y=F(x)(x∈(0,3])图象上任意一点P(x,y)为切点的切线的斜率 kmanfen5.com 满分网恒成立,求实数a的最小值.
(Ⅲ)是否存在实数m,使得函数y=g(manfen5.com 满分网)+m-1的图象与y=f(1+x2)的图象恰好有四个不同的交点?若存在,求出m的取值范围,若不存在,说明理由.
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.