1. 难度:中等 | |
集合M={x|lgx>0},N={x|x2≤4},则M∩N=( ) A.(1,2) B.[1,2) C.(1,2] D.[1,2] |
2. 难度:中等 | |
下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A.y=x3 B.y=|x|+1 C.y=-x2+1 D.y=2-|x| |
3. 难度:中等 | |
设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
4. 难度:中等 | |
函数y=-x+b与y=b-x(b>0且b≠0)的图象可能是( ) A. B. C. D. |
5. 难度:中等 | |
lgx-=0有解的区间是( ) A.(0,1] B.(10,100] C.(1,10] D.(100,+∞) |
6. 难度:中等 | |
若f(x)=,则f(x)的定义域为( ) A.(,0) B.(,0] C.(,+∞) D.(0,+∞) |
7. 难度:中等 | |
设函数f(x)=,则f()的值为( ) A. B.- C. D.18 |
8. 难度:中等 | |
设f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,则xf(x)<0的解集为( ) A.(-1,0)∪(2,+∞) B.(-∞,-2)∪(0,2) C.(-∞,-2)∪(2,+∞) D.(-2,0)∪(0,2 |
9. 难度:中等 | |
定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-3)等于 ( ) A.2 B.3 C.6 D.9 |
10. 难度:中等 | |
对实数a与b,定义新运算“⊗”:设函数f(x)=(x2-2)⊗(x-x2),x∈R.若函数y=f(x)-c的图象与x轴恰有两个公共点,则实数c的取值范围是( ) A. B. C. D. |
11. 难度:中等 | |
定义在R上的函数f(x)是奇函数又是以2为周期的周期函数,则f(1)+f(4)+f(7)等于( ) A.-1 B.0 C.1 D.4 |
12. 难度:中等 | |
设函数f(x)是奇函数,并且在R上为增函数,若0≤θ≤时,f(msinθ)+f(1-m)>0恒成立,则实数m的取值范围是( ) A.(0,1) B.(-∞,0) C.(-∞,1) D.(-∞,) |
13. 难度:中等 | |
函数y=-x2-4mx+1在[2,+∞)上是减函数,则m的取值范围是 . |
14. 难度:中等 | |
函数的单调递减区间是 . |
15. 难度:中等 | |
方程9x-6•3x-7=0的解是 . |
16. 难度:中等 | |
函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则+的最小值为 . |
17. 难度:中等 | |
计算: (1); (2)已知3x=4y=36,求的值. |
18. 难度:中等 | |
已知命题P函数y=loga(1-2x)在定义域上单调递增;命题Q不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立若P∨Q是真命题,求实数a的取值范围. |
19. 难度:中等 | |
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的x∈R,恒有f(x)>0; (3)已知f(x)是R上的增函数,若f(x)•f(2x-x2)>1,求x的取值范围. |
20. 难度:中等 | |
已知定义域为R的函数是奇函数. (Ⅰ)求a,b的值; (Ⅱ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围. |
21. 难度:中等 | |
某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元. (1)写出y与x之间的函数关系式; (2)从第几年开始,该机床开始盈利? (3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由. |
22. 难度:中等 | |
选修4-1:几何证明选讲 如图,AB为圆O的直径,D为圆O上一点,过D作圆O的切线交AB的延长线于点C,若DA=DC,求证:AB=2BC. |
23. 难度:中等 | |
在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为. (1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线l的位置关系; (2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值. |
24. 难度:中等 | |
选修4-5:不等式选讲 设a,b是非负实数,求证:. |