1. 难度:中等 | |
圆 (x-2)2+(y+3)2=2 的圆心坐标和半径长分别是( ) A.(-2,3),1 B.(2,-3 ),2 C.(-2,3),2 D.(2,-3 ), |
2. 难度:中等 | |
有20位同学,编号从1至20,现从中抽取4人作问卷调查,用系统抽样法所抽的编号为( ) A.5、10、15、20 B.2、6、10、14 C.2、4、6、8 D.5、8、11、14 |
3. 难度:中等 | |
某赛季,甲、乙两名篮球运动员都参加了10场比赛,他们每场得分的情况如图所示的茎叶图表示,则甲、乙两名运动员的中位数分别为( ) A.19,13 B.21,17 C.23,21 D.21,18 |
4. 难度:中等 | |
命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( ) A.若f(x)是偶函数,则f(-x)是偶函数 B.若f(x)不是奇函数,则f(-x)不是奇函数 C.若f(-x)是奇函数,则f(x)是奇函数 D.若f(-x)不是奇函数,则f(x)不是奇函数 |
5. 难度:中等 | |
下列命题是真命题的为( ) A.若,则x=y B.若x2=1,则x=1 C.若x=y,则 D.若x<y,则x2<y2 |
6. 难度:中等 | |||||||||||||||
容量为20的样本数据,分组后的频数如下表
A.0.35 B.0.45 C.0.55 D.0.65 |
7. 难度:中等 | |
直线3x-4y-4=0被圆(x-3)2+y2=9截得的弦长为( ) A. B.4 C. D.2 |
8. 难度:中等 | |
对变量x,y 有观测数据(x1,y1)(i=1,2,…,10),得散点图1;对变量u,v 有观测数据(v1,vi)(i=1,2,…,10),得散点图2.下列说法正确的是( ) A.变量x 与y 正相关,u 与v 正相关 B.变量x 与y 负相关,u 与v 正相关 C.变量x 与y 正相关,u 与v 负相关 D.变量x 与y 负相关,u 与v 负相关 |
9. 难度:中等 | |
在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是( ) A.众数 B.平均数 C.中位数 D.标准差 |
10. 难度:中等 | |
若a∈R,则a=2是(a-1)(a-2)=0的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 |
11. 难度:中等 | |
圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为( ) A.内切 B.相交 C.外切 D.相离 |
12. 难度:中等 | |
若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a取值范围是( ) A.[-3,-1] B.[-1,3] C.[-3,1] D.(-∞,-3]∪[1,+∞) |
13. 难度:中等 | |
圆心为C(1,-2),半径长是3的圆的标准方程是 . |
14. 难度:中等 | |
已知A(1,-2,3),B(-2,2,4),则A,B两点间的距离是 . |
15. 难度:中等 | |
一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为 . |
16. 难度:中等 | |
在空间直角坐标系中,点P(-1,2,3)关于坐标平面xOy对称点的坐标是 . |
17. 难度:中等 | |
已知一个样本的方差,则这组数据的总和等于 . |
18. 难度:中等 | |
已知p是r的充分不必要条件,q是r的必要条件,那么p是q成立的 条件. |
19. 难度:中等 | |
已知直线l:x-y+4=0与圆C:(x-1)2+(y-1)2=2,则C上各点到l的距离的最小值为 . |
20. 难度:中等 | |
由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据为 .(从小到大排列) |
21. 难度:中等 | |
已知圆C的圆心是直线 x-y+1=0与x轴的交点,且圆C与直线3x+4y+13=0 相切,求圆C的方程. |
22. 难度:中等 | |||||||||||
某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100]. (1)求图中a的值; (2)根据频率分布直方图,估计这100名学生语文成绩的平均分; (3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
|
23. 难度:中等 | |
已知过点(2,3)作圆C:x2+y2-2x+4y+4=0 的切线, (1)求圆心C的坐标和半径长; (2)求切线方程. |
24. 难度:中等 | |||||||||||
.
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5) |
25. 难度:中等 | |
已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P、Q两点,且以PQ为直径的圆恰好经过坐标原点O,求m的值. |