1. 难度:简单 | |
许多物理学家的科学发现推动了人类的进步。对以下几位科学家所作科学贡献的表述中,与事实相符的是( ) A.亚里士多德根据理想斜面实验,提出了力不是维持物体运动的原因 B.牛顿发现了万有引力定律,并测出了引力常量G C.库伦发现了电荷之间相互作用规律—库仑定律,卡文迪许用扭秤实验测出了静电力常量k D.密立根最早通过实验,比较准确的测定了电子的电量
|
2. 难度:困难 | |
如图所示,一辆装满沙子的自卸卡车,设沙粒之间的动摩擦因数为,沙子与车厢底部材料的动摩擦因数为(已知),车厢的倾角用表示,下列说法正确的是( ) A.要顺利地卸干净全部沙子,只要满足即可 B.要顺利地卸干净全部沙子,只要满足即可 C.若只卸去部分沙子,车上还留有一部分沙子,应满足 D.若只卸去部分沙子,车上还留有一部分沙子,应满足
|
3. 难度:中等 | |
如图所示,质量均为1kg的两个物体A、B放在水平地面上相距7m,它们与水平地面的动摩擦因数均为μ=0.2.现使它们分别以初速度vA=6m/s和vB=2m/s同时相向运动,不计物体的大小,g取10m/s2.则( ) A.它们经过()s相遇 B.它们经过s相遇 C.它们在距离物体A出发点5.25m处相遇 D.它们在距离物体A出发点6m处相遇
|
4. 难度:困难 | |
我国志愿者王跃曾与俄罗斯志愿者一起进行“火星500”的实验活动。假设王跃登陆火星后,测得火星的半径是地球半径的,质量是地球质量的。已知地球表面的重力加速度是g,地球的半径为R,王跃在地面上能向上竖直跳起的最大高度是h,忽略自转的影响,下列说法正确的是( ) A.火星的密度为 B.火星表面的重力加速度是 C.火星的第一宇宙速度与地球的第一宇宙速度之比为 D.王跃以与在地球上相同的初速度在火星上起跳后,能达到的最大高度是
|
5. 难度:中等 | |
如图所示,一质量为m、电荷量为q的小球在电场强度为E、区域足够大的匀强电场中,以初速度v0沿ON在竖直面内做匀变速直线运动。ON与水平面的夹角为30°,重力加速度为g,且mg=qE,则( ) A.电场方向竖直向上 B.小球运动的加速度大小为g/2 C.小球上升的最大高度为 D.若小球在初始位置的电势能为零,则小球电势能的最大值为
|
6. 难度:困难 | |
汽车以额定功率在水平路面上行驶,空载时的最大速度为v1,装满货物后的最大速度是v2.已知汽车空车的质量是m0,汽车所受的阻力与车重成正比,则汽车后来所装货物的质量是( ) A. B. C. D.
|
7. 难度:中等 | |
如图所示,长为L的轻杆,一端固定一个质量为m的小球,另一端固定在水平转轴O上,杆随转轴O竖直平面内匀速转动,角速度为ω,某时刻杆对球的作用力恰好与杆垂直,则此时杆与水平面的夹角是( ) A. B. C. D.
|
8. 难度:困难 | |
如图所示,P是水平面上的圆弧凹槽.从高台边B点以某速度v0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左端A点沿圆弧切线方向进入轨道.O是圆弧的圆心,θ1是OA与竖直方向的夹角,θ2是BA与竖直方向的夹角.则( ) A.=2 B.tanθ1tanθ2=2 C.=2 D.=2
|
9. 难度:中等 | |
一物体悬挂在细绳下端,由静止开始沿竖直方向运动,运动过程中物体的机械能E与物体位移S关系的图像如图所示,其中0到S1过程的图线为曲线,S1到S2过程的图线为直线,由此可以判断( ) A.0到S1过程中物体所受拉力是变力,且一定不断增大 B.0到S1过程中物体的动能一定是不断减小 C.S1到S2过程中物体一定做匀速运动 D.S1到S2过程中物体可能做匀加速运动
|
10. 难度:中等 | |
如图所示,固定在水平面上的光滑斜面倾角为30°,质量分别为M、m的两个物体通过细绳及轻弹簧连接于光滑轻滑轮两侧,斜面底端有一与斜面垂直的挡板.开始时用手按住物体M,此时M距离挡板的距离为s,滑轮两边的细绳恰好伸直,且弹簧处于原长状态.已知M=2m,空气阻力不计.松开手后,关于二者的运动下列说法中正确的是( ) A.M和m组成的系统机械能守恒 B.当M的速度最大时,m与地面间的作用力为零 C.若M恰好能到达挡板处,则此时m的速度为零 D.若M恰好能到达挡板处,则此过程中重力对M做的功等于弹簧弹性势能的增加量与物体m的机械能增加量之和
|
11. 难度:中等 | |
如图所示,在两等量异种点电荷的电场中,MN为两电荷连线的中垂线,a、b、c三点所在直线平行于两电荷的连线,且a与c关于MN对称,b点位于MN上,d点位于两电荷的连线上.以下判断正确的是( ) A.b点场强大于d点场强 B.b点场强小于d点场强 C.a、b两点间的电压等于b、c两点间的电压 D.试探电荷+q在a点的电势能小于在c点的电势能
|
12. 难度:困难 | |
如图所示,一个小球(视为质点)从H=12m高处,由静止开始通过光滑弧形轨道AB,进入半径R=4m的竖直圆环,且圆环动摩擦因数处处相等,当到达环顶C时,刚好对轨道压力为零;沿CB圆弧滑下后,进入光滑弧形轨道BD,且到达高度为h的D点时的速度为零,则h之值不可能为(10m/s2,所有高度均相对B点而言)( ) A.12m B.10m C.8.5m D.7m
|
13. 难度:困难 | |||||
“动能定理”和“机械能守恒定律”是物理学中很重要的两个力学方面的物理规律。某同学设计了如图所示的实验装置。一个电磁铁吸住一个小钢球,当将电磁铁断电后,小钢球将由静止开始向下加速运动。小钢球经过光电门时,计时装置将记录小钢球通过光电门所用的时间t,用直尺测量出小钢球由静止开始下降至光电门时的高度h。 (1)该同学为了验证“动能定理”,用游标卡尺测量了小钢球的直径,结果如上图所示,他记录的小钢球的直径d=________cm。 (2)该同学在验证“动能定理”的过程中,忽略了空气阻力的影响,除了上述的数据之外是否需要测量小钢球的质量________(填“需要”或“不需要”)。 (3)如果用这套装置验证机械能守恒定律,下面的做法能提高实验精度的是 。
|
14. 难度:中等 | |
为了测量小滑块与水平桌面间的动摩擦因数,某小组设计了如图甲所示的实验装置,其中挡板可固定在桌面上,轻弹簧左端与挡板相连,图中桌面高为h,O1、O2、A、B、C点在同一水平直线上.已知重力加速度为g,空气阻力可忽略不计. 实验过程一:挡板固定在O1点,推动滑块压缩弹簧,滑块移到A处,测量O1A的距离,如图甲所示.滑块由静止释放,落在水平面上的P点,测出P点到桌面右端的水平距离为x1. 实验过程二:将挡板的固定点移到距O1点距离为d的O2点,如图乙所示,推动滑块压缩弹簧,滑块移到C处,使O2C的距离与O1A的距离相等.滑块由静止释放,落在水平面上的Q点,测出Q点到桌面右端的水平距离为x2. (1)为完成本实验,下列说法中正确的 . A.必须测出小滑块的质量 B.必须测出弹簧的劲度系数 C.弹簧的压缩量不能太小 D.必须测出弹簧的原长 (2)写出动摩擦因数的表达式μ= .(用题中所给物理量的符号表示) (3)小红在进行实验过程二时,发现滑块未能滑出桌面.为了测量小滑块与水平桌面间的动摩擦因数,还需测量的物理量是 . (4)某同学认为,不测量桌面高度,改用秒表测出小滑块从飞离桌面到落地的时间,也可测出小滑块与水平桌面间的动摩擦因数.此实验方案 .(选填“可行”或“不可行”)
|
15. 难度:困难 | |
如图甲所示,绷紧的水平传送带始终以恒定速率v1运行,一质量m=1kg,初速度大小为v2的煤块从与传送带等高的光滑水平地面上的A处滑上传送带.若以地面为参考系,从煤块滑上传送带开始计时,煤块在传送带上运动的速度﹣时间图象如图乙所示,取g=10m/s2,求: (1)煤块与传送带间的动摩擦因数; (2)煤块在传送带上运动的时间; (3)整个过程中由于摩擦产生的热量.
|
16. 难度:困难 | |
如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为,半圆形轨道的底端放置一个质量为的小球B,水平面上有一个质量为的小球A以初速度开始向着木块B滑动,经过时间与B发生弹性碰撞,设两个小球均可以看作质点,它们的碰撞时间极短,且已知木块A与桌面间的动摩擦因数,求: (1)两小球碰前A的速度; (2)小球B运动到最高点C时对轨道的压力 (3)确定小球A所停的位置距圆轨道最低点的距离。
|
17. 难度:困难 | |
如图所示,水平向左的匀强电场中,用长为的绝缘轻质细绳悬挂一小球,小球质量m,带电量为,将小球拉至竖直位置最低位置A点处无初速释放,小球将向左摆动,细线向左偏离竖直方向的最大角度(重力加速度为g,,) (1)求电场强度的大小E; (2)将小球向左摆动的过程中,对细线拉力的最大值; (3)若从A点处释放小球时,给小球一个水平向左的初速度,则为保证小球能做完整的圆周运动,的大小应满足什么条件?
|