1. 难度:困难 | |
如图所示,两根光滑金属导轨平行放置,导轨所在平面与水平面间的夹角为θ.整个装置处于沿竖直方向的匀强磁场中.质量为m的金属杆ab垂直导轨放置,当杆中通有从a到b的恒定电流I时,金属杆ab刚好静止.则( ) A.磁场方向竖直向下 B.磁场方向竖直向上 C.ab所受支持力的大小为mgcosθ D.ab所受安培力的大小为mgcosθ
|
2. 难度:困难 | |
如图所示,一矩形闭合线圈在匀强磁场中绕垂直于磁场方向的转轴ΟΟ′以恒定的角速度转动,从图示位置开始计时,则在转过180o这段时间内( ) A.线圈中的感应电流一直在减小 B.线圈中的感应电流先增大后减小 C.穿过线圈的磁通量一直在增大 D.穿过线圈的磁通量的变化率先减小后增大
|
3. 难度:中等 | |
如图所示,匀强电场竖直向上,匀强磁场的方向垂直纸面向外.有一正离子(不计重力),恰能沿直线从左向右水平飞越此区域.则( ) A.若电子从右向左水平飞入,电子也沿直线运动 B.若电子从右向左水平飞入,电子将向上偏 C.若电子从右向左水平飞入,电子将向下偏 D.若电子从右向左水平飞入,则无法判断电子是否偏转
|
4. 难度:中等 | |
一个匝数为100匝,电阻为0.5Ω的闭合线圈处于某一磁场中,磁场方向垂直于线圈平面,从某时刻起穿过线圈的磁通量按图示规律变化,则线圈中产生交变电流的有效值为( ) A.6A B.5A C.2A D.2A
|
5. 难度:压轴 | |
如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个用相同材料、相同粗细的导线绕制的单匝闭合正方形线圈1和2,其边长L1=2L2,在距磁场上界面h高处由静止开始自由下落,再逐渐完全进入磁场,最后落到地面.运动过程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边界.设线圈1、2落地时的速度大小分别为v1、v2,在磁场中运动时产生的热量分别为Q1、Q2,通过线圈截面的电荷量分别为q1、q2,不计空气阻力,则( ) A.v1<v2,Q1>Q2,q1>q2 B.v1=v2,Q1=Q2,q1=q2 C.v1<v2,Q1>Q2,q1=q2 D.v1=v2,Q1<Q2,q1<q2
|
6. 难度:困难 | |
阻值相等的四个电阻、电容器C及电池E(内阻可忽略)连接成如图所示电路.开关S断开且电流稳定时,C所带的电荷量为Q1,闭合开关S,电流再次稳定后,C所带的电荷量为Q2.Q1与Q2的比值为( ) A.2:5 B.1:2 C.3:5 D.2:3
|
7. 难度:困难 | |
某交流电源可在改变其输出电流的频率的同时保持其输出电压不变,现用此电源对如图所示的电路供电,灯A、B、C分别与电容C0、电感线圈L、定值电阻R串联,此时三只灯泡亮度相同.现保持电压不变,让频率变为原来的两倍,则三只灯泡的亮度变化是( ) A.A灯比原来亮 B.B灯比原来亮 C.C灯比原来亮 D.A、B、C三灯亮度仍然相同
|
8. 难度:压轴 | |
一圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示.图中直径MN的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M射入筒内,射入时的运动方向与MN成30°角.当筒转过90°时,该粒子恰好从小孔N飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为( ) A. B. C. D.
|
9. 难度:压轴 | |
如图所示,理想变压器原线圈接在交流电源上,图中各电表均为理想电表,下列说法正确的是( ) A.当滑动变阻器的滑动触头P向上滑动时,R1消耗的功率变大 B.当滑动变阻器的滑动触头P向上滑动时,电压表V示数变大 C.当滑动变阻器的滑动触头P向上滑动时,电流表A1示数变小 D.若闭合开关S,则电流表A1示数变大,A2示数变大
|
10. 难度:压轴 | |
如图所示,在等腰三角形abc区域内有垂直纸面向外的匀强磁场,d是ac上任意一点,e是bc上任意一点.大量相同的带电粒子从a点以相同方向进入磁场,由于速度大小不同,粒子从ac和bc上不同点离开磁场.不计粒子重力,则从c点离开的粒子在三角形abc磁场区域内经过的弧长和运动时间,与从d点和e点离开的粒子相比较( ) A.经过的弧长一定大于从d点离开的粒子经过的弧长 B.经过的弧长一定小于从e点离开的粒子经过的弧长 C.运动时间一定大于从d点离开的粒子的运动时间 D.运动时间一定大于从e点离开的粒子的运动时间
|
11. 难度:压轴 | |
如图所示,一匀强磁场B垂直于倾斜放置的光滑绝缘斜面斜向上,匀强磁场区域在斜面上虚线ef与gh之间.在斜面上放置一质量为m、电阻为R的矩形铝框abcd,虚线ef、gh和斜面底边pq以及铝框边ab均平行,且eh>bc.如果铝框从ef上方的某一位置由静止开始运动.则从开始运动到ab边到达gh线之前的速度(v)﹣时间(t)图象,可能正确的有( ) A. B. C. D.
|
12. 难度:压轴 | |
如图所示,MN是纸面内的一条直线,其所在空间充满与纸面平行的匀强电场或与纸面垂直的匀强磁场(场区都足够大),现有一个重力不计的带电粒子从MN上的O点以水平初速度v0射入场区,下列判断正确的是( ) A.如果粒子回到MN上时速度增大,则该空间存在的场一定是电场 B.如果粒子回到MN上时速度大小不变,则该空间存在的场可能是电场 C.若只改变粒子的初速度大小,发现粒子再回到MN上时与其所成的锐角夹角不变,则该空间存在的场一定是磁场 D.若只改变粒子的初速度大小,发现粒子再回到MN上所用的时间不变,则该空间存在的场一定是磁场
|
13. 难度:中等 | |
(1)如图,螺旋测微器的读数为 mm;游标卡尺读数为 cm, (2)用多用电表探测图甲所示的黑箱发现:用直流电压挡测量,E、G两点间和F、G两点间均有电压,E、F两点间无电压;用欧姆表测量,黑表笔接E点,红表笔接F点,阻值很小,但反接阻值很大.那么该黑箱内元件的接法可能是下图中的 .
|
14. 难度:压轴 | |
图(a)是白炽灯L1(220V,100W)和L2(220V,60W)的伏安特性曲线. (1)随着灯泡L1功率的增大,其灯丝阻值逐渐 .(选填变大、变小或不变) (2)若将它们串联后接在220V电源上,则此时L1灯的实际功率为 W. (3)若用图(b)电路测量L1灯的伏安特性,由于电表存在内阻,实际测得的伏安特性曲线比图(a)中描绘出的理想伏安特性曲线在I﹣U图中位置来得偏 (选填高或低). (4)用图(b)所示电路测量L1灯伏安特性时,已知R0=10Ω,E=300V.则电路中可变电阻R的最大值和最大电流选用下列那种规格,测量效果最好 . A.5Ω,10A B.50Ω,6A C.500Ω,1A D.5000Ω,1A
|
15. 难度:压轴 | |
如图所示,面积为0.2m2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面,已知磁感应强度随时间变化的规律为B=(2+0.2t)T,定值电阻R1=6Ω,线圈电阻R2=4Ω,求: (1)回路中的感应电动势大小; (2)回路中电流的大小和方向; (3)a、b两点间的电势差。
|
16. 难度:压轴 | |
如图所示,将某正粒子放射源置于原点O,其向各方向射出的粒子速度大小均为υ0、质量均为m、电荷量均为q.在0≤y≤d的一、二象限范围内分布着一个左右足够宽的匀强电场,方向与y轴正向相同,在d<y≤2d的一、二象限范围内分布着一个左右足够宽的匀强磁场,方向垂直于xOy平面向里.粒子第一次离开电场上边界y=d时,能够到达的最右侧的位置为(d,d),且最终恰没有粒子从y=2d的边界离开磁场,若只考虑每个粒子在电场中和磁场中各运动一次,不计粒子重力以及粒子间的相互作用,求: (1)电场强度E和磁感应强度B; (2)粒子在磁场中运动的最短时间。
|
17. 难度:压轴 | |
如图1所示,两根水平的金属光滑平行导轨,其末端连接等高光滑的圆弧,其轨道半径r=0.5m,圆弧段在图中的cd和ab之间,导轨的间距为L=0.5m,轨道的电阻不计,在轨道的顶端接有阻值为R=2.0Ω的电阻,整个装置处在竖直向上的匀强磁场中,磁感应强度B=2.0T.现有一根长度稍大于L、电阻不计,质量m=1.0kg的金属棒,从轨道的水平位置ef开始在拉力F作用下,从静止匀加速运动到cd的时间t0=2.0s,在cd时的拉力为F0=3.0N.已知金属棒在ef和cd之间运动时的拉力随时间变化的图象如图2所示,重力加速度g=10m/s2,求:
(1)求匀加速直线运动的加速度; (2)金属棒做匀加速运动时通过金属棒的电荷量q; (3)匀加到cd后,调节拉力使金属棒接着沿圆弧做匀速圆周运动至ab处,金属棒从cd沿圆弧做匀速圆周运动至ab的过程中,拉力做的功W.
|