1. 难度:简单 | |
在物理学发展史上,许多科学家通过不懈的努力,取得了辉煌的研究成果,下列表述符合物理学史实的是( ) A. 牛顿总结出了万有引力定律并测出万有引力常量 B. 哥白尼提出了日心说,并发现了行星是沿椭圆轨道绕太阳运行的 C. 第谷通过大量运算分析总结出了行星运动的三条规律 D. 卡文迪许通过实验测出了万有引力常量
|
2. 难度:中等 | |
质点仅在恒力F的作用下,由O点运动到A点的轨迹如图所示,在A点时速度的方向与x轴平行,则恒力F的方向可能沿( ) A. x轴正方向 B. x轴负方向 C. y轴正方向 D. y轴负方向
|
3. 难度:中等 | |
甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道。以下判断正确的是 A. 甲的周期小于乙的周期 B. 乙的速度大于第一宇宙速度 C. 甲的加速度小于乙的加速度 D. 甲在运行时能经过北极的正上方
|
4. 难度:中等 | |
某人以一定的速率垂直于河岸向对岸游去,当河水是匀速运动时,人所游过的路程、过河的时间与水速的关系是 A. 水速大时,路程长,时间短 B. 水速大时,路程长,时间不变 C. 水速大时,路程长,时间长 D. 水速、路程与时间无关
|
5. 难度:中等 | |
如图所示,AB为竖直面内圆弧轨道,半径为R,BC为水平直轨道,长度也是R。一质量为m的物体,与两个轨道间的动摩擦因数都为μ,现使物体从轨道顶端A由静止开始下滑,恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为 A. μmgR B. μmgπR C. mgR D. (1-μ)mgR
|
6. 难度:中等 | |
如图所示,半径为20cm的轻质定滑轮固定在天花板上,轻绳一端系一质量m=2kg的物体,另一端跨过定滑轮并施一恒定的竖直向下的拉力F=25N,已知A为滑轮边缘上的点,B到滑轮中心的距离等于滑轮半径的一半。设在整个运动过程中滑轮与轻绳没有相对滑动,不计一切阻力,那么 A. A、B均做匀速圆周运动 B. 在F作用下,物体从静止开始运动,2s末A点的线速度是2.5m/s C. 在F作用下,物体从静止开始运动,2s末B点的角速度是25rad/s D. 在任何时刻,A点的角速度总是大于B点的角速度
|
7. 难度:中等 | |
在云南省某些地方到现在还要依靠滑铁索过江,如左图。把这滑铁索过江简化成右图的模型,铁索的两个固定点A、B在同一水平面内,AB间的距离为L=80m,绳索的最低点离AB间的垂直距离为H=8m,若把绳索看做是一段圆弧,已知一质量m=52kg的人借助滑轮(滑轮质量不计)滑到最低点时速度为10m/s,重力加速度g取10m/s2,那么 A. 人在整个绳索上运动可看成是匀速圆周运动 B. 可求得绳索的圆弧半径为102m C. 人滑到最低点时对绳索的压力为470N D. 人滑到最低点时对绳索的压力为570N
|
8. 难度:中等 | |
如图所示,粗细均匀的U形管内装有同种液体,在管口右端用盖板A密闭,两管内液面的高度差为h,U形管中液柱的总长为4h。现拿去盖板A,液体开始流动,不计液体内部及液体与管壁间的阻力,则当两液面高度相等时,右侧液面下降的速度是 A. B. C. D.
|
9. 难度:中等 | |
下列运动中,在任何1秒的时间间隔内运动物体的速度改变量完全相同的有(空气阻力不计) A. 自由落体运动 B. 平抛物体的运动 C. 竖直上抛物体运动 D. 匀速圆周运动
|
10. 难度:中等 | |
如图,A、D分别是斜面的顶端和底端,B、C是斜面上的两个点,且AB=BC=CD,E点在D点的正上方,与A等高。从E点以不同的水平速度抛出质量相等的两个小球(不计空气阻力),球1落在B点,球2落在C点,两球从抛出到落在斜面上的运动过程中的说法正确的是 A. 球1和球2运动时的加速度大小之比为1∶2 B. 球1和球2动能增加量之比为1∶2 C. 球1和球2抛出时初速度大小之比为2∶1 D. 球1和球2运动的时间之比为1∶
|
11. 难度:中等 | |
在发射某人造地球卫星时,首先让卫星进入低轨道,变轨后进入高轨道,假设变轨前后该卫星都在做匀速圆周运动,不计卫星质量的变化,若变轨后的动能减小为原来的,则卫星进入高轨道后 A. 轨道半径为原来的2倍 B. 角速度为原来的 C. 向心加速度为原来的 D. 周期为原来的8倍
|
12. 难度:中等 | |
如图所示,两个竖直圆弧轨道固定在同一水平地面上,半径R相同,左侧轨道由金属凹槽制成,右侧轨道由金属圆管制成,且均可视为光滑.在两轨道右侧的正上方分别将金属小球A和B由静止释放,小球距离地面的高度分别为hA和hB,下列说法正确的是( ) A. 若使小球A沿轨道运动并且从最高点飞出,释放的最小高度为 B. 若使小球B沿轨道运动并且从最高点飞出,释放的最小高度为 C. 适当调整hA,可使A球从轨道最高点飞出后,恰好落在轨道右端口处 D. 适当调整hB,可使B球从轨道最高点飞出后,恰好落在轨道右端口处
|
13. 难度:中等 | |
如图所示为一小球做平抛运动的闪光照片的一部分,图中背景方格的边长均为4.9cm,如果g取9.8m/s2,那么:
(1)闪光的时间间隔是_______s; (2)小球运动中水平分速度的大小是_______m/s; (3)小球经过B点时竖直向下的分速度大小是_______m/s。
|
14. 难度:中等 | |
如图所示是某同学探究动能定理的实验装置.已知重力加速度为g,不计滑轮摩擦阻力,该同学的实验步骤如下: a.将长木板倾斜放置,小车放在长木板上,长木板旁放置两个光电门A和B,砂桶通过滑轮与小车相连. b.调整长木板倾角,使得小车恰好能在细绳的拉力作用下匀速下滑,测得砂和砂桶的总质量为m. c.某时刻剪断细绳,小车由静止开始加速运动. d.测得挡光片通过光电门A的时间为Δt1,通过光电门B的时间为Δt2,挡光片宽度为d,小车质量为M,两个光电门A和B之间的距离为L. e.依据以上数据探究动能定理. (1)根据以上步骤,你认为以下关于实验过程的表述正确的是________. A.实验时,先剪断细绳,后接通光电门 B.实验时,小车加速运动的合外力为F=Mg C.实验过程不需要测出斜面的倾角 D.实验时,应满足砂和砂桶的总质量m远小于小车质量M (2)小车经过光电门A、B的瞬时速度为vB=________、vA=________.如果关系式___________在误差允许范围内成立,就验证了动能定理.
|
15. 难度:中等 | |
长为L的轻质细线,拴一质量为m的小球,一端固定于O点,让小球在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,已知摆线与竖直方向的夹角是α,求:
(1)细线的拉力F; (2)小球运动的线速度的大小。
|
16. 难度:中等 | |
我国首个月球探测计划“嫦娥工程”将分三个阶段实施,大约用十年左右时间完成,这极大地提高了同学们对月球的关注程度。以下是某同学就有关月球的知识设计的两个问题,请你解答: (1)若已知地球半径为R,地球表面的重力加速度为g,万有引力常量为G,月球绕地球运动的周期为T,且把月球绕地球的运动近似看作是匀速圆周运动。试求出月球绕地球运动的轨道半径r。 (2)若某位宇航员随登月飞船登陆月球后,在月球某水平表面上方h高处以速度V0水平抛出一个小球,小球落到月球表面时距抛出点的水平距离为s。已知月球半径为R月,万有引力常量为G。试求出月球的质量M月。
|
17. 难度:中等 | |
某汽车发动机的额定功率为60kW,汽车质量为5t,汽车在运动中所受阻力的大小恒为车重的0.1倍。(g取10m/s2) (1)若汽车以额定功率启动,则汽车所能达到的最大速度是多少? (2)当汽车速度达到5m/s时,其加速度是多少? (3)若汽车以恒定加速度0.5m/s2启动,则其匀加速过程能维持多长时间?
|
18. 难度:中等 | |
如图所示,一压缩的轻弹簧左端固定,右端与一滑块相接触但不拴接,滑块质量为m,A点左侧地面光滑,滑块与水平地面AB段间的动摩擦因数为0.2,AB的长度为5R,现将滑块由静止释放,当滑块被弹到A点时弹簧恰恢复原长,之后滑块继续向B点滑行,并滑上光滑的半径为R的光滑圆弧轨道BC。在C点正上方有一离C点高度也为R的旋转平台,沿平台直径方向开有两个离轴心距离相等的小孔P、Q,平台旋转时两孔均能达到C点的正上方。若滑块滑过C点后从P孔穿出,又恰能从Q孔穿过落回。已知压缩的轻弹簧具有的弹性势能为4.5mgR。空气阻力可忽略不计,求:
(1)滑块通过B点时对地板的压力; (2)平台转动的角速度ω应满足什么条件(用g、R表示) (3)小物体最终停在距A点多远处?(假设小物体每次与弹簧碰撞时没有机械能损失)
|