若解关于x的方程产生增根,则m的值为( ▲ )
A.-1 B.1 C.-2 D.2
若点(3,4)是反比例函数y= 图象上一点,则此函数图象必经过点 ( ▲ )
A.(2,6) B.(2,-6) C.(4,-3) D.(3,-4)
若a<b,则下列各式中一定成立的是( ▲ )
A.3a>3b B.ac<bc C. -a<-b D.a-1<b-1
,其中分式共有 ( ▲ )
A.2个 B.3个 C.4个 D.5个
(本题满分12分)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC =6cm,BC = 6 cm,EF = 12cm.
如图(2),△DEF从图(1)的位置出发,以1 cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s).解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)当t为何值时,△PQE是直角三角形?
(3)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由.
(4)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由
(本小题满分10分)
如图(1),在平面直角坐标系中,△OAB三个顶点坐标分别为O(0,0),A(1,),B(4,0).
(1)求证:AB⊥OA
(2)在第一象限内确定点M,使△MOB与△AOB相似,求符合条件的点M的坐标.
(3)如图(2),已知D(0,-3),作直线BD.
①将△AOB沿射线BD平移4个单位长度后,求△AOB与以D为圆心,以1为半径的⊙D的公共点的个数.
②如图(3),现有一点P从D点出发,沿射线DB的方向以1个单位长度/秒的速度作匀速运动,运动时间为秒.当以P为圆心,以为半径的⊙P与△AOB有公共点时,求的取值范围.