满分5 > 初中数学试题 >

已知:如图1,平面直角坐标系中,四边形OABC是矩形,点A,C的坐标分别为(6,...

已知:如图1,平面直角坐标系6ec8aac122bd4f6e中,四边形OABC是矩形,点AC的坐标分别为(6,0),(0,2).点D是线段BC上的一个动点(点D与点BC不重合),过点D作直线6ec8aac122bd4f6e=-6ec8aac122bd4f6e6ec8aac122bd4f6e交折线OAB于点E

说明: 6ec8aac122bd4f6e

1.(1)在点D运动的过程中,若△ODE的面积为S,求S6ec8aac122bd4f6e的函数关系式,并写出自变量的取值范围;

2.(2)如图2,当点E在线段OA上时,矩形OABC关于直线DE对称的图形为矩形O′A′B′C′C′B′分别交CBOA于点DMO′A′分别交CBOA于点N,E.探究四边形DMEN各边之间的数量关系,并对你的结论加以证明;

说明: 6ec8aac122bd4f6e

    3.(3)问题(2)中的四边形DMEN中,ME的长为____________.

 

1.【解析】 (1)∵矩形OABC中,点A,C的坐标分别为,,             ∴点B的坐标为. 若直线经过点C,则;             若直线经过点A,则;             若直线经过点B,则. ①当点E在线段OA上时,即时,(如图6)              ∵点E在直线上, 当时,,             ∴点E的坐标为.             ∴.  ②当点E在线段BA上时,即时,(如图7)              ∵点D,E在直线上, 当时,; 当时,,             ∴点D的坐标为,点E的坐标为.             ∴                 .             综上可得: 2.(2)DM=ME=EN=ND. 证明:如图8. ∵四边形OABC和四边形O′A′B′C′是矩形, ∴CB∥OA, C′B′∥O′A′, 即DN∥ME,DM∥NE.                   ∴四边形DMEN是平行四边形,且∠NDE=∠DEM.               ∵矩形OABC关于直线DE对称的图形为矩形O′A′B′C′,               ∴∠DEM=∠DEN.               ∴∠NDE=∠DEN.               ∴ND=NE.               ∴四边形DMEN是菱形.               ∴DM=ME=EN=ND.  3.(3)答:问题(2)中的四边形DMEN中,ME的长为  2. 5  【解析】略
复制答案
考点分析:
相关试题推荐

已知:如图1,直线6ec8aac122bd4f6e与双曲线6ec8aac122bd4f6e交于AB两点,且点A的坐标为(6ec8aac122bd4f6e).

说明: 6ec8aac122bd4f6e

1.(1)求双曲线6ec8aac122bd4f6e的解析式;

2.(2)点C6ec8aac122bd4f6e)在双曲线6ec8aac122bd4f6e上,求△AOC的面积;

3.(3)过原点O作另一条直线6ec8aac122bd4f6e与双曲线6ec8aac122bd4f6e交于PQ两点,且点P在第一象限.若由点APBQ为顶点组成的四边形的面积为20,请直接写出所有符合条件的点P的坐标.

 

 

查看答案

已知:如图,梯形ABCD中,ADBC,∠B=90°,AD=6ec8aac122bd4f6eBC=6ec8aac122bd4f6eDC=6ec8aac122bd4f6e

6ec8aac122bd4f6e,点MAB边的中点.

说明: 6ec8aac122bd4f6e

1.(1)求证:CMDM

2.(2)求点MCD边的距离.(用含6ec8aac122bd4f6e6ec8aac122bd4f6e的式子表示)

 

查看答案

为了增强员工的团队意识,某公司决定组织员工开展拓展活动.从公司到拓展活动地点的路程总长为126千米,活动的组织人员乘坐小轿车,其他员工乘坐旅游车同时从公司出发,前往拓展活动的目的地.为了在员工们到达之前做好活动的准备工作,小轿车决定改走高速公路,路程比原路线缩短了18千米,这样比按原路线行驶的旅游车提前24分钟到达目的地.已知小轿车的平均速度是旅游车的平均速度的1.2倍,求这两种车平均每小时分别行驶多少千米.

 

查看答案

甲,乙两人是NBA联盟凯尔特人队的两位明星球员,两人在前五个赛季的罚球

命中率如下表所示:

 

甲球员的命中率(%)

87

86

83

85

79

乙球员的命中率(%)

87

85

84

80

84

1.(1)分别求出甲,乙两位球员在前五个赛季罚球的平均命中率;

2.(2)在某场比赛中,因对方球员技术犯规需要凯尔特人队选派一名队员进行罚球,你认为甲,乙两位球员谁来罚球更好?(请通过计算说明理由)

 

查看答案

.已知:如图,□ABCD中,对角线ACBD相交于点O,延长CDF,使DF=CD,连接BFAD于点E

说明: 6ec8aac122bd4f6e

1.(1)求证:AE=ED

2.(2)若AB=BC,求∠CAF的度数.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.