(本题满分12分)
如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,AB∥OC,点A的坐标为(0,8),点C的坐标为(10,0),OB=OC,
(1) 求点B的坐标;
(2) 点P从C点出发,沿线段CO以1个单位/秒的速度向终点O匀速运动,过点P作PH⊥OC,交折线C-B-O于点H,设点P的运动时间为秒(),
①是否存在某个时刻,使△OPH的面积等于△OBC面积的?若存在,求出
的值,若不存在,请说明理由;
②以P为圆心,PC长为半径作⊙P,当⊙P与线段OB只有一个公共点时,求的值或的取值范围
(本题满分12分)
如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.
(1)请完成如下操作:
①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系; ②根据图形提供的信息,标出该圆弧所在圆的圆心D,
并连结AD、CD.
(2)请在(1)的基础上,完成下列填空:
①写出点的坐标:C 、D ;
②⊙D的半径= (结果保留根号);
③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面的面积为 ;(结果保留)
(3)若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由
(本题满分10分)
某商店经销一批小家电,每个小家电的成本为40元。据市场分析,销售单价定为50元时,一个月能售出500件;若销售单价每涨1元,月销售量就减少10件.针对这种小家电的销售情况,请回答以下问题:
(1)当销售单价定为60元时,计算月销售量和月销售利润;
(2)设销售单价定为x元(x>50),月销售利润为y元,求y(用含x的代数式表示);
(3)现该商店要保证每月盈利8750元,同时又要使顾客得到实惠,那么销售单价应定为多少元?
(本题满分10分)
如图,是直角三角形,,以AB为直径的⊙O交于点E,点D是BC边的中点,连结.
(1)试判断直线DE与⊙O的位置关系?并说明理由;
(2)若⊙O的半径为,,求AE的长
(本题满分10分)
如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F
(1)求证:FC=FB;
(2)若CD=24,BE=8,求⊙O的直径
(本题满分10分)
已知:如图,在Rt△ABC中,∠ACB=90º,AC=6,sinB=, 点D是边BC的中点,
CE⊥AD,垂足为E.
求:(1)线段CD的长;
(2)cos∠DCE的值.