如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是 ( )
一元二次方程的解是( ).
A., B.
C. D. ,
关于频率和概率的关系,下列说法正确的是( ).
A. 频率等于概率
B. 当实验次数很大时,频率稳定在概率附近
C. 当实验次数很大时,概率稳定在频率附近
D. 实验得到的频率与概率不可能相等
教学楼里的大型多功能厅建成阶梯形状是为了( ).
A. 美观 B. 宽敞明亮 C. 减小盲区 D. 容纳量大
(本题满分12分)
设抛物线与X轴交于两不同的点(点A在点B的左边),与y轴的交点为点C(0,-2),且∠ACB=900.
1.(1)求m的值和该抛物线的解析式;
2.(2)若点D为该抛物线上的一点,且横坐标为1,点E为过A点的直线y=x+1与该抛物线的另一交点.在X轴上是否存在点P,使得以P、B、D为顶点的三角形与△AEB相似,若存在,求出点P的坐标,若不存在,请说明理由.
3.(3)连结AC、BC,矩形FGHQ的一边FG在线段AB上,顶点H、Q分别在线段AC、BC上,若设F点坐标为(t,0),矩形FGHQ的面积为S,当S取最大值时,连接FH并延长至点M,使HM=k·FH,若点M不在该抛物线上,求k的取值范围.
(本题10分)
AB为⊙O的直径,CD与⊙O相切于点C,且OD⊥BC,垂足为F,OD交⊙O于E点
1.(1)证明:
2.(2)∠D=∠AEC;
3.(3)若⊙O的半径为5,BC=8,求⊿CDE的面积。