(12分)
已知在菱形ABCD中,E是BC的中点,且∠FAE=∠BAE.
(1) 如图,当点F在边DC的延长线上时,求证:AF=BC-CF;
(2)当点F与点C重合时,求∠B的度数,并说明理由;
(3) 当点F在边DC上时,(1)中求证的结论还成立吗?若不成立,
请直接写出成立的结论;
(4)当∠B=90°时,请确定点F的位置
(12分) 阅读并解答问题
用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为,所以就有最小值1,即,只有当时,才能得到这个式子的最小值1.同样,因为,所以有最大值1,即,只有在时,才能得到这个式子的最大值1.
(1)当= 时,代数式有最 (填写大或小)值为 .
(2)当= 时,代数式有最 (填写大或小)值为 .
(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?
(10分)
某宾馆有若干间住房,住宿记录提供了如下信息:①10月5日全部住满,一天住宿费收入为12000元;②10月6日有20间房空着,一天住宿费收入为9600元;③该宾馆每间房每天收费标准相同.
(1)求该宾馆共有多少间住房,每间住房每天收费多少元?
(2)10月份以后,通过市场调查发现,每间住房每天的定价每增加10元,该宾馆的所有房间就会有5个房间空闲;己知该宾馆空闲房间每天每间支出费用10元,有游客居住房间每天每间支出费用20元,问房价定为多少元时,该宾馆一天的利润为11000元?
(利润=住宿费收入-支出费用)
(8分)
如图,一个被两条直径分成4个扇形的圆形转盘(两条直径的一个夹角为60°),其中3个扇形分别标有数字3,4,5,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(如果指针指向两个扇形的交线时,那么重转1次,直到指针指向某一扇形的位置).
(1)求当转动这个转盘,转盘自由停止后,指针指向没有标数字的扇形的概率;
(2)请在6,7这2个数字中选出一个数字填写在没有标数字的扇形内,使得分别转动转盘2次,转盘自由停止后指针所指扇形的数字和分别为奇数与为偶数的概率相等,并说明理由
(8分)
如图,AD平分∠MAN, BD⊥AM,CD⊥AN,垂足分别为B、C
(1)说明:AB=AC
(2)若点E为线段AB上一点,用尺规在射线AN上找一点F,使△CDF与△BDE全等(保留作图痕迹),请写出此时∠AFD与∠AED的关系,并说明理由.
(8分)
已知关于的方程.
①当m取何值时方程有两个相等的实数根.
②为m选取一个适当的整数,使方程有两个不相等的实数根,并求出这两个实数根