(本题满分10分)
如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.
(1)求证:AF平分∠BAC;
(2)求证:BF=FD;
(3)若EF=3,DE=2,求AD的长.
(本小题满分8分)
“中秋”节前,妈妈去超市购买了大小、质量都相同的火腿月饼和豆沙月饼若干,放入不透明的盒中,此时随机取出火腿月饼的概率为; 小明发现爷爷喜欢吃的火腿月饼偏少,又叫爸爸去买了同样的5只火腿月饼和1只豆 沙月饼放入同一盒中,这时随机取出火腿月饼的概率为.
(1)请计算出妈妈买的火腿月饼和豆沙月饼各有多少只?
(2)若妈妈从盒中取出火腿月饼4只、豆沙月饼6只送给奶奶后,再让小明从盒中任取2只(取出不放回),问恰有火腿月饼、豆沙月饼各1只的概率是多少?
(可用列表法进行解答)
(本小题满分10分)
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.
(1)求证:直线AB是⊙O的切线;
(2)试猜想BC,BD,BE三者之间的等量关系,并加以证明
(本小题8分)如图,在△ABC中,,点D在BC上,且DC=AC,
∠ACB的平分线CF交AD于点F,点E是AB的中点,连结EF.
求证:EF∥BC;
若△ABD的面积为6,求四边形BDFE的面积.
(本小题10分)
抛物线经过点O(0,0),A(4,0),B(2,2).
(1)求该抛物线的解析式;
(2)画出此抛物线的草图;
(3)求证:△AOB是等腰直角三角形;
(4)将△AOB绕点O按顺时针方向旋转135°得△,写出边的中点P的 坐标,试判定点P是否在此抛物线上,并说明理由.
(本小题8分)
关于x的一元二次方程有两个不相等的实数根.
(1)求k的取值范围.
(2)请选择一个k的负整数值,并求出方程的根