(本小题满分7分)
向阳花卉基地出售两种花卉——百合和玫瑰,其单价为:玫瑰4元/株,百合5元/株,如果同一客户所购的玫瑰数量大于1200株,那么每株玫瑰还可降价1元。现某鲜花店向向阳花卉基地采购玫瑰1000株~1500株,百合若干株,此鲜花店本次用于采购玫瑰和百合恰好花去了9000元。然后再以玫瑰5元、百合6.5元的价格卖出。问:此鲜花店应如何采购这两种鲜花才能使获得的毛利润最大?
(注:1000株~1500株,表示大于或等于1000株,且小于或等于1500株。
毛利润=鲜花店卖出百合和玫瑰所获的总金额—购进百合和玫瑰的所需的总金额
(本小题满分6分)
小明在研究了苏科版《有趣的坐标系》后,得到启发,针对正六边形OABCDE,自己设计了一个坐标系如图。该坐标系以O为原点,直线OA为x轴,以正六边形OABCDE的边长为一个单位长。坐标系中的任意一点P用一有序实数对(a,b)来表示,我们称这个有序实数对(a,b)为P点的坐标。坐标系中点的坐标的确定方法如下:
(1)x轴上点M的坐标为(m,0),其中m为M在x轴上表示的实数;
(2)y轴上点N的坐标为(0,n),其中n为N点在y轴上表示的实数;
(3)不在x、y轴上的点Q的坐标为(a,b),其中a为过点Q且与y轴平行的直线与x轴的交点在x轴上表示的实数,b为过点Q且与x轴平行饿直线与y轴的交点在y轴上表示的实数。
则:(1)分别写出点A、B、C的坐标;
(2)标出点M(2,3)的位置;
(3)若点K(x,y)为射线OD上任一点,求x与y所满足的关系式
(本小题满分7分)
如图,在△ABC和△CDE中,AB=AC=CE,BC=DC=DE,AB>BC,∠BAC=∠DCE=∠a,点B、C、D在直线l上,按下列要求画图(保留画图痕迹):
(1)画出点E关于直线l的对称点E′,连接CE′、DE′;
(2)以点C为旋转中心,将(1)中所得△CDE′按逆时针方向旋转,使得CE′与CA重合,得到△CD′E″(A)。画出△CD′E″(A),并解决下面问题:
①线段AB和线段CD′的位置关系是 ,理由是:
②求∠a的度数。
(本小题满分7分)
如图,在△ABC中,AB=AC,D为BC中点。四边形ABDE是平行四边形。
求证:四边形ADCE是矩形
(本小题满分5分)
如图,在△ABC中,点D、E分别在边AC、AB上,BD=CE,∠DBC=∠ECB。
求证:AB=AC
(本小题满分8分)
如图所示,小吴和小黄在玩转盘游戏,准备了两个可以自由转动的转盘甲、乙,每个转盘被分成面积相等的几个扇形区域,并在每个扇形区域内标上数字,游戏规则:同时转动两个转盘,当转盘停止转动后,指针所指扇形区域内的数字之和为4,5或6时,则小吴胜;否则小黄胜。(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一扇形区域为止)
(1)这个游戏规则对双方公平吗?说说你的理由;
(2)请你设计一个对双方都公平的游戏规则。